Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(3): e0096123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38315017

RESUMEN

Leuconostoc carnosum is a bacterial species commonly associated with meat spoilage. However, some strains exhibit preservative effects due to bacteriocin production. Here, we report the complete genome sequences for two strains, L. carnosum 4010 and AMS1. Bacteriocin-related gene clusters were found on the plasmids of both strains.

2.
Front Microbiol ; 14: 1276268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840711

RESUMEN

This study aimed to examine the effects of supplementation of postbiotics derived from Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) in cheese whey (CW) and skim milk (SM) on antioxidant activity, viability of yoghurt starters, and quality parameters of low-fat yoghurt during 22 days of storage. The LB-CW (L delbrueckii ssp. bulgaricus postbiotic-containing cheese whey) sample exhibited the highest antioxidant activity, with 18.71% inhibition (p > 0.05). This sample also showed the highest water holding capacity (77.93%; p < 0.05) and a trend toward receiving the most favorable sensory attributes (p > 0.05) compared to the other samples. The LB-CW and LB-SM yoghurt samples exhibited significantly higher body and texture scores compared to the ST-SM-fortified yoghurt (p < 0.05). However, there was no significant difference in the overall acceptability of the LB-SM and ST-SM yoghurt samples across both starters (p > 0.05). Such findings highlight the potential of postbiotics as functional ingredients to enhance the nutritional and sensory aspects of yoghurt, further contributing to its appeal as a health-promoting product.

3.
Front Microbiol ; 14: 1219723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520360

RESUMEN

Introduction: Lactococcus is a genus of lactic acid bacteria used in the dairy industry as a starter. Lactococci have been found to produce altogether more than 40 different bacteriocins, ribosomally synthesized antimicrobial proteins. All known Lactococcus spp. bacteriocins belong to classes I and II, which are mainly heat-resistant peptides. No class III bacteriocins, bigger heat-sensitive proteins, including phage tail-like bacteriocins, have been found from the Lactococcus spp. Unlike phage tail-like bacteriocins, prophage lysins have not been regarded as bacteriocins, possibly because phage lysins contribute to autolysis, degrading the host's own cell wall. Methods: Wild-type Lactococcus lactis strain LAC460, isolated from spontaneously fermented idli batter, was examined for its antimicrobial activity. We sequenced the genome, searched phage lysins from the culture supernatant, and created knock-out mutants to find out the source of the antimicrobial activity. Results and discussion: The strain LAC460 was shown to kill other Lactococcus strains with protease- and heat-sensitive lytic activity. Three phage lysins were identified in the culture supernatant. The genes encoding the three lysins were localized in different prophage regions in the chromosome. By knock-out mutants, two of the lysins, namely LysL and LysP, were demonstrated to be responsible for the antimicrobial activity. The strain LAC460 was found to be resistant to the lytic action of its own culture supernatant, and as a consequence, the phage lysins could behave like bacteriocins targeting and killing other closely related bacteria. Hence, similar to phage tail-like bacteriocins, phage lysin-like bacteriocins could be regarded as a novel type of class III bacteriocins.

4.
Front Cell Infect Microbiol ; 13: 1181315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197200

RESUMEN

Introduction: The aggregation of the neuronal protein alpha-synuclein (alpha-syn) is a key feature in the pathology of Parkinson's disease (PD). Alpha-syn aggregation has been suggested to be induced in the gut cells by pathogenic gut microbes such as Desulfovibrio bacteria, which has been shown to be associated with PD. This study aimed to investigate whether Desulfovibrio bacteria induce alpha-syn aggregation. Methods: Fecal samples of ten PD patients and their healthy spouses were collected for molecular detection of Desulfovibrio species, followed by bacterial isolation. Isolated Desulfovibrio strains were used as diets to feed Caenorhabditis elegans nematodes which overexpress human alpha-syn fused with yellow fluorescence protein. Curli-producing Escherichia coli MC4100, which has been shown to facilitate alpha-syn aggregation in animal models, was used as a control bacterial strain, and E. coli LSR11, incapable of producing curli, was used as another control strain. The head sections of the worms were imaged using confocal microscopy. We also performed survival assay to determine the effect of Desulfovibrio bacteria on the survival of the nematodes. Results and Discussion: Statistical analysis revealed that worms fed Desulfovibrio bacteria from PD patients harbored significantly more (P<0.001, Kruskal-Wallis and Mann-Whitney U test) and larger alpha-syn aggregates (P<0.001) than worms fed Desulfovibrio bacteria from healthy individuals or worms fed E. coli strains. In addition, during similar follow-up time, worms fed Desulfovibrio strains from PD patients died in significantly higher quantities than worms fed E. coli LSR11 bacteria (P<0.01). These results suggest that Desulfovibrio bacteria contribute to PD development by inducing alpha-syn aggregation.


Asunto(s)
Desulfovibrio , Enfermedad de Parkinson , Animales , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Foods ; 11(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159544

RESUMEN

Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities.

6.
Front Cell Infect Microbiol ; 11: 652617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012926

RESUMEN

Parkinson's disease (PD) is the most prevalent movement disorder known and predominantly affects the elderly. It is a progressive neurodegenerative disease wherein α-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The cause of Parkinson's disease (PD) remains unknown. Intestinal dysfunction and changes in the gut microbiota, common symptoms of PD, are evidently linked to the pathogenesis of PD. Although a multitude of studies have investigated microbial etiologies of PD, the microbial role in disease progression remains unclear. Here, we show that Gram-negative sulfate-reducing bacteria of the genus Desulfovibrio may play a potential role in the development of PD. Conventional and quantitative real-time PCR analysis of feces from twenty PD patients and twenty healthy controls revealed that all PD patients harbored Desulfovibrio bacteria in their gut microbiota and these bacteria were present at higher levels in PD patients than in healthy controls. Additionally, the concentration of Desulfovibrio species correlated with the severity of PD. Desulfovibrio bacteria produce hydrogen sulfide and lipopolysaccharide, and several strains synthesize magnetite, all of which likely induce the oligomerization and aggregation of α-synuclein protein. The substances originating from Desulfovibrio bacteria likely take part in pathogenesis of PD. These findings may open new avenues for the treatment of PD and the identification of people at risk for developing PD.


Asunto(s)
Desulfovibrio , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Anciano , Bacterias , Humanos , alfa-Sinucleína
7.
J Agric Food Chem ; 69(17): 5144-5154, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33881846

RESUMEN

Cystatins are proteins, which inhibit cysteine proteases, such as papain. In this study, the 336-bp cystatin C gene (family II, HmCysC) of silver carp (Hypophthalmichthys molitrix) was cloned and expressed in Escherichia coli BL21 (DE3). HmCysC encodes the mature peptide of cystatin C (HmCystatin C), with 111 amino acids. A typical QXXXG motif was found in HmCystatin C and it formed a cluster with Cyprinus carpio and Danio rerio cystatin C in the phylogenetic tree. Quantitative real-time polymerase chain reaction analysis indicated that HmCysC was transcribed at different levels in five tested tissues of silver carp. Following purification with Ni2+- nitrilotriacetic acid agarose affinity chromatography, HmCystatin C displayed a molecular weight of 20 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified HmCystatin C had strong inhibitory effects toward the proteolytic activity of papain. Immunochemical staining with anti-HmCystatin C antibody showed that HmCystatin C was widely distributed in silver carp tissues. These results collectively demonstrated the properties of HmCystatin C, providing information for further studies of cystatins from fish organisms.


Asunto(s)
Carpas , Cistatinas , Animales , Carpas/genética , Clonación Molecular , Cistatina C , Cistatinas/genética , Filogenia , Distribución Tisular
8.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33419737

RESUMEN

Lacticaseibacillus rhamnosus GG (LGG) is the most studied probiotic bacterium in the world. It is used as a probiotic supplement in many foods, including various dairy products. However, LGG grows poorly in milk, as it neither metabolizes the main milk carbohydrate lactose nor degrades the major milk protein casein effectively. In this study, we made L. rhamnosus GG lactose and protease positive by conjugation with the dairy Lactococcus lactis strain NCDO 712 carrying the lactose-protease plasmid pLP712. A lactose-hydrolyzing transconjugant colony was obtained on agar containing lactose as the sole source of carbohydrates. By microscopic analysis and PCR with LGG- and pLP712-specific primers, the transconjugant was confirmed to have originated from LGG and to carry the plasmid pLP712. The transconjugant was named L. rhamnosus LAB49. The isolation of plasmids revealed that not only pLP712 but also other plasmids had been transferred from L. lactis into LGG during conjugation. With plasmid-specific PCR primers, four additional lactococcal plasmids were detected in LAB49. Proteolytic activity assay and SDS-PAGE analysis verified that L. rhamnosus LAB49 effectively degraded ß-casein. In contrast to its parental strain, LGG, the ability of LAB49 to metabolize lactose and degrade casein enabled strong and fast growth in milk. As strains with new properties made by conjugation are not regarded as genetically modified organisms (GMOs), L. rhamnosus LAB49 could be beneficial in dairy fermentations as a probiotic starter culture.IMPORTANCE Probiotic strain Lacticaseibacillus rhamnosus GG (LGG) is widely sold on the market as a probiotic or added as a supplement in dairy foods because of its benefits in human health. However, due to the deficiency of lactose and casein utilization, LGG does not grow well in milk. On the other hand, lactose intolerance and cow's milk protein allergy are the two major problems related to milk consumption. One option to help with these two conditions is the use of probiotic or lactose- and casein-hydrolyzing bacteria in dairy products. The purpose of this study was to equip LGG with lactose/casein-hydrolyzing ability by bacterial conjugation. As a result, we generated a non-GMO LGG derivative with improved properties and better growth in milk.


Asunto(s)
Caseínas/metabolismo , Lacticaseibacillus rhamnosus , Lactococcus lactis , Lactosa/metabolismo , Péptido Hidrolasas/metabolismo , Probióticos , Animales , Conjugación Genética , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Lactococcus lactis/metabolismo , Leche/microbiología , Plásmidos , Proteolisis
9.
Int J Biol Macromol ; 173: 399-408, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454334

RESUMEN

Herein, a new method was demonstrated for effective immobilization of the antibacterial peptide nisin on Grifola frondosa hydrophobin (HGFI), without the need of any additional complex reaction. Hydrophobin can self-assemble as a monolayer to form continuous negative-charged surfaces with enhanced wettability and biocompatibility. Adding nisin solution to such hydrophobin surface created antibacterial surfaces. The quantification analysis revealed that more nisin could be adsorbed on the HGFI-coated than to control polystyrene surfaces at different pH values. This suggested that electronic attraction and wettability may play important roles in this process. The transmission electron microscopy, atomic force microscopy and fourier transform infrared (FTIR) analysis indicated the adsorption mode of nisin on the HGFI film, i.e., hydrophobins served as an adhesive layer for binding charged peptides to interfaces. The antibacterial activity of the treated surface was investigated via counting, a nucleic acid release test, scanning electron microscopy, and biofilm detection. These results indicated the excellent antibacterial activity of nisin adsorbed on the HGFI-coated surfaces. The activity retention of adsorbed nisin was demonstrated by immersing the modified substrates in a flowed liquid condition.


Asunto(s)
Antibacterianos/farmacología , Proteínas Fúngicas/química , Grifola/metabolismo , Nisina/farmacología , Poliestirenos/química , Adsorción , Antibacterianos/química , Biopelículas/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Nisina/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Humectabilidad
10.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414301

RESUMEN

We report here the genome sequence of Lactococcus lactis subsp. lactis N8, a nisin producer isolated in the 1960s from a dairy product in Finland. The genome consists of a 2.42-Mb chromosome and two plasmids of 80.3 and 71.3 kb.

11.
Probiotics Antimicrob Proteins ; 13(1): 229-237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32567021

RESUMEN

The yeast Saccharomyces boulardii is well known for its probiotic effects such as treating or preventing gastrointestinal diseases. Due to its ability to survive in stomach and intestine, S. boulardii could be applied as a vehicle for producing and delivering bioactive substances of interest to human gut. In this study, we cloned the gene lecC encoding the antilisterial peptide leucocin C from lactic acid bacterium Leuconostoc carnosum in S. boulardii. The constructed S. boulardii strain secreted a peptide, which had molecular weight corresponding to leucocin C in SDS-PAGE. The peptide band inhibited Listeria monocytogenes in gel overlay assay. Likewise, concentrated S. boulardii culture supernatant inhibited the growth of L. monocytogenes. The growth profile and acid tolerance of the leucocin C secreting S. boulardii were similar as those of the strain carrying the empty vector. We further demonstrated that the cells of the leucocin C producing S. boulardii efficiently killed L. monocytogenes, also without antibiotic selection pressure. These results showed that antilisterial activity could be added to the arsenal of probiotic activities of S. boulardii, demonstrating its potential as a carrier for therapeutics delivery.


Asunto(s)
Bacteriocinas , Expresión Génica , Leuconostoc/genética , Listeria monocytogenes/crecimiento & desarrollo , Saccharomyces boulardii , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo
12.
ACS Appl Bio Mater ; 3(7): 4095-4108, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025484

RESUMEN

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials.

13.
BMC Microbiol ; 19(1): 167, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319790

RESUMEN

BACKGROUND: The human gastrointestinal (GI) tract microbiota has been a subject of intense research throughout the 3rd Millennium. Now that a general picture about microbiota composition in health and disease is emerging, questions about factors determining development of microbiotas with specific community structures will be addressed. To this end, usage of murine models for colonization studies remains crucial. Optical in vivo imaging of either bioluminescent or fluorescent bacteria is the basis for non-invasive detection of intestinal colonization of bacteria. Although recent advances in in vivo fluorescence imaging have overcome many limitations encountered in bioluminescent imaging of intestinal bacteria, such as requirement for live cells, high signal attenuation and 2D imaging, the method is still restricted to bacteria for which molecular cloning tools are available. RESULTS: Here, we present usage of a lipophilic fluorescent dye together with Katushka far-red fluorescent protein to establish a dual-color in vivo imaging system to monitor GI transit of different bacterial strains, suitable also for strains resistant to genetic labeling. Using this system, we were able to distinguish two different E. coli strains simultaneously and show their unique transit patterns. Combined with fluorescence molecular tomography, these distinct strains could be spatially and temporally resolved and quantified in 3D. CONCLUSIONS: Developed novel method for labeling microbes and identify their passage both temporally and spatially in vivo makes now possible to monitor all culturable bacterial strains, also those that are resistant to conventional genetic labeling.


Asunto(s)
Tracto Gastrointestinal/microbiología , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos , Animales , Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Microscopía Intravital/métodos , Proteínas Luminiscentes/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Tomografía Óptica , Proteína Fluorescente Roja
14.
Appl Microbiol Biotechnol ; 102(15): 6299-6307, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29850958

RESUMEN

Nisin is a bacteriocin produced by Lactococcus lactis that has been approved by the Food Drug Administration for utilization as a GRAS status food additive. Nisin can inhibit spore germination and demonstrates antimicrobial activity against Listeria, Clostridium, Staphylococcus, and Bacillus species. Under some circumstances, it plays an immune modulator role and has a selective cytotoxic effect against cancer cells, although it is notable that the high production cost of nisin-a result of the low nisin production yield of producer strains-is an important factor restricting intensive use. In recent years, production of nisin has been significantly improved through genetic modifications to nisin producer strains and through innovative applications in the fermentation process. Recently, 15,400 IU ml-1 nisin production has been achieved in L. lactis cells following genetic modifications by eliminating the factors that negatively affect nisin biosynthesis or by increasing the cell density of the producing strains in the fermentation medium. In this review, innovative approaches related to cell and fermentation systems aimed at increasing nisin production are discussed and interpreted, with a view to increasing industrial nisin production.


Asunto(s)
Tecnología de Alimentos/tendencias , Lactococcus lactis/metabolismo , Nisina/biosíntesis , Nisina/genética
15.
Colloids Surf B Biointerfaces ; 151: 255-263, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28027492

RESUMEN

Class IIa bacteriocin pediocin PA-1 has broad-spectrum activity and is a well-characterized candidate food biopreservative. Here, a simple approach is designed to extend the application of pediocin PA-1 in improving the antibacterial activity of electrospun poly(caprolactone) (PCL) grafts through combining PA-1 with HGFI, which is a self-assembled protein with characteristics allowing the modulation of surface properties of other materials originated from Grifola frondosa. Saccharomyces cerevisiae was used as the host for expression of fusion protein PA-1-linker-HGFI (pH) and his-tag purification was used to purify recombinant protein pH. An antibacterial activity assay showed the fusion protein pH retained the biological property of native PA-1. Water contact angle, X-ray photoelectron spectroscopy, immunofluorescence assay and atomic force microscopy indicated the surface properties of HGFI were greatly preserved by the fusion protein pH. Finally, antibacterial activity of pH-modified PCL substrate measurements implied the fusion protein significantly improved the bacterial-resistance of the PCL film through dressing the PCL fibers with the recombinant pH protein. This work presents a new perspective on the application of hydrophobin and pediocin PA-1 in antibacterial medical devices.


Asunto(s)
Antibacterianos/química , Caproatos/química , Lactonas/química , Pediocinas/química , Animales , Anticuerpos/química , Bacteriocinas/química , Biopelículas , Equipos y Suministros , Conservantes de Alimentos , Grifola/química , Concentración de Iones de Hidrógeno , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Espectroscopía de Fotoelectrones , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae , Propiedades de Superficie , Humectabilidad
16.
Appl Microbiol Biotechnol ; 100(22): 9661-9669, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27654656

RESUMEN

In this paper, we present a new counterselection method for deleting fragments from Lactococcus lactis chromosome. The method uses a non-replicating plasmid vector, which integrates into the chromosome and makes the cell sensitive to bacteriocins. The integration vector carries pUC ori functional in Escherichia coli but not in L. lactis, an erythromycin resistance gene for selecting single crossover integrants, and two fragments from L. lactis chromosome for homologous recombinations. In addition, the integration vector is equipped with the Listeria monocytogenes gene mptC encoding the mannose-phosphotransferase system component IIC, the receptor for class IIa bacteriocins. Expression of mptC from the integration vector renders the naturally resistant L. lactis sensitive to class IIa bacteriocins. This sensitivity is then used to select the double crossover colonies on bacteriocin agar. Only the cells which have regained the endogenous bacteriocin resistance through the loss of the mptC plasmid will survive. The colonies carrying the desired deletion can then be distinguished from the wild-type revertants by PCR. By using the class IIa bacteriocins leucocin A, leucocin C or pediocin AcH as the counterselective agents, we deleted 22- and 33-kb chromosomal fragments from the wild-type nisin producing L. lactis strain N8. In conclusion, this counterselection method presented here is a convenient, efficient and inexpensive technique to generate successive deletions in L. lactis chromosome.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Edición Génica/métodos , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/genética , Viabilidad Microbiana/efectos de los fármacos , Selección Genética , Vectores Genéticos , Recombinación Homóloga , Plásmidos
17.
Res Microbiol ; 166(6): 494-503, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25957244

RESUMEN

Leuconostoc carnosum 4010 is an antimicrobial strain used as a protective culture in vacuum-packed meats. In this study, we showed that, in addition to antilisterial class IIa bacteriocins leucocin A and C, the strain also produces class IId bacteriocin leucocin B, the antimicrobial activity of which is limited to the genera Leuconostoc and Weissella. Two novel genes, lebBI encoding the leucocin B precursor with a double-glycine-type leader and putative immunity protein LebI, were identified on L. carnosum 4010 plasmid pLC4010-1. LebI contains three transmembrane spans and shares 55% identity with the mesentericin B105 immunity protein. Genes lebBI were shown to be transcribed in 4010 by RT-PCR analysis. The secretion of leucocin B in L. carnosum 4010 was shown by spot-on-lawn and SDS-gel overlay methods with a Leuconostoc strain sensitive to leucocin B but resistant to leucocins A and C. In addition, leucocins A and B from L. carnosum 4010 were cloned as SSusp45 fusions in heterologous host Lactococcus lactis and the secretion of active bacteriocins was detected on indicator plates.


Asunto(s)
Bacteriocinas/genética , Bacteriocinas/aislamiento & purificación , Leuconostoc/genética , Secuencia de Aminoácidos , Bacteriocinas/biosíntesis , Bacteriocinas/clasificación , Lactococcus lactis/genética , Leuconostoc/metabolismo , Carne/microbiología , Datos de Secuencia Molecular , Plásmidos , Homología de Secuencia de Aminoácido , Weissella
18.
Biotechnol Prog ; 31(3): 678-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826783

RESUMEN

In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 µg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation.


Asunto(s)
Fermentación , Hemina/química , Lactococcus lactis/metabolismo , Nisina/biosíntesis , Ácido Acético/metabolismo , Biomasa , Medios de Cultivo/química , Glucosa/química , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Micrococcus luteus/metabolismo , Oxígeno/química
19.
BMC Microbiol ; 15: 4, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25591990

RESUMEN

BACKGROUND: For a good probiotic candidate, the abilities to adhere to intestinal epithelium and to fortify barrier function are considered to be crucial for colonization and functionality of the strain. The strain Lactobacillus acidophilus LAB20 was isolated from the jejunum of a healthy dog, where it was found to be the most pre-dominant lactobacilli. In this study, the adhesion ability of LAB20 to intestinal epithelial cell (IECs) lines, IECs isolated from canine intestinal biopsies, and to canine, porcine and human intestinal mucus was investigated. Further, we studied the ability of LAB20 to fortify the epithelial cell monolayer and to reduce LPS-induced interleukin (IL-8) release from enterocytes. RESULTS: We found that LAB20 presented higher adhesion to canine colonic mucus as compared to mucus isolated from porcine colon. LAB20 showed adhesion to HT-29 and Caco-2 cell lines, and importantly also to canine IECs isolated from canine intestinal biopsies. In addition, LAB20 increased the transepithelial electrical resistance (TER) of enterocyte monolayers and thus strengthened the intestinal barrier function. The strain showed also anti-inflammatory capacity in being able to attenuate the LPS-induced IL-8 production of HT-29 cells. CONCLUSION: In conclusion, canine indigenous strain LAB20 is a potential probiotic candidate for dogs adhering to the host epithelium and showing intestinal barrier fortifying and anti-inflammatory effects.


Asunto(s)
Adhesión Bacteriana , Enterocitos/inmunología , Enterocitos/microbiología , Interleucina-8/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Lactobacillus acidophilus/fisiología , Animales , Células Cultivadas , Perros , Humanos , Interleucina-8/antagonistas & inhibidores , Yeyuno/microbiología , Lactobacillus acidophilus/aislamiento & purificación , Moco/metabolismo , Moco/microbiología
20.
Curr Microbiol ; 70(2): 195-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25270683

RESUMEN

Listeria phage endolysin cell wall-binding domain (CBD) from the Listeria phage A500 was fused with flagellar subunit FliC in Escherichia coli, aiming at binding of E. coli cells to Listeria cells, followed by enhanced killing of Listeria by pediocin production. FliC::CBD chimeric flagella were expressed and detected by Western blot. However, only few chimeric flagella could be isolated from the recombinant cells compared with sufficient amount of wild-type flagella obtained from the host cells. Interestingly, wild-type flagella extract showed capacity of binding Listeria cells. Pediocin-secreting E. coli cells with Listeria-binding flagella killed approximately 40 % of the Listeria cells, whereas cell-free spent growth medium with the same pediocin concentration only inhibited Listeria growth. These results suggested that binding the Listeria to bacteriocin-secreting cells improves killing.


Asunto(s)
Antibiosis , Adhesión Bacteriana , Bacteriocinas/metabolismo , Escherichia coli/fisiología , Listeria monocytogenes/fisiología , Bacteriocinas/biosíntesis , Flagelos/genética , Flagelos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...