Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 799, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001931

RESUMEN

BACKGROUND: Although DNA repair mechanisms function to maintain genomic integrity, in cancer cells these mechanisms may negatively affect treatment efficiency. The strategy of targeting cancer cells via inhibiting DNA damage repair has been successfully used in breast and ovarian cancer using PARP inhibitors. Unfortunately, such strategies have not yet yielded results in liver cancer. Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a treatment-resistant malignancy. Despite the development of guided therapies, treatment regimens for advanced HCC patients still fall short of the current need and significant problems such as cancer relapse with resistance still exist. In this paper, we targeted telomeric replication protein CTC1, which is responsible for telomere maintenance. METHODS: CTC expression was analyzed using tumor and matched-tissue RNA-sequencing data from TCGA and GTEx. In HCC cell lines, q-RT-PCR and Western blotting were used to detect CTC1 expression. The knock-down of CTC1 was achieved using lentiviral plasmids. The effects of CTC1 silencing on HCC cells were analyzed by flow cytometry, MTT, spheroid and colony formation assays. RESULTS: CTC1 is significantly downregulated in HCC tumor samples. However, CTC1 protein levels were higher in sorafenib-resistant cell lines compared to the parental groups. CTC1 inhibition reduced cell proliferation in sorafenib-resistant HCC cell lines and diminished their spheroid and colony forming capacities. Moreover, these cells were more sensitive to single and combined drug treatment with G4 stabilizer RHPS4 and sorafenib. CONCLUSION: Our results suggest that targeting CTC1 might be a viable option for combinational therapies designed for sorafenib resistant HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Sorafenib , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Línea Celular Tumoral , Sorafenib/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Altern Lab Anim ; 51(5): 301-312, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37555318

RESUMEN

Liver cancer is the third leading cause of cancer-related mortality, and hepatocellular carcinoma (HCC) is the most common form of liver cancer, and it usually occurs in the setting of chronic liver disease and cirrhosis. For patients with advanced HCC, systemic treatment is the first choice - however, resistance occurs frequently. Sorafenib was the first tyrosine kinase inhibitor approved for advanced HCC, and resistance to the therapy is a serious concern. When sorafenib therapy fails in a patient, it can be challenging to decide whether they can undergo a second-line therapy, and to determine which therapy they will be able to tolerate. Thus, physiologically relevant in vitro preclinical models are crucial for screening potential therapies, and 3-D tumour spheroids permit studies of tumour pathobiology. In this study, a drug-resistant 3-D tumour spheroid model was developed, based on sorafenib-resistant hepatocellular carcinoma cells, LX2 stellate cells and THP-1 monocytes. Model tumour spheroids that were formed with the sorafenib-resistant cells demonstrated lower diffusion of doxorubicin and exhibited increased resistance to regorafenib. Moreover, in the sorafenib-resistant spheroids, there was increased presence of CD68-positive cells and a reduction in inflammatory marker secretion. The sorafenib-resistant cell line-derived spheroids also showed a higher expression of FGF-19, PDGF-AA and GDF-15, which are known to be involved in malignancies. This multi-cell type spheroid model represents a potentially useful system to test drug candidates in a microenvironment that mimics the drug-resistant tumour microenvironment in HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Microambiente Tumoral , Resistencia a Antineoplásicos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Cell Signal ; 105: 110608, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36693455

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and the third most lethal malignancy worldwide. Patients with unresectable HCC receive systemic therapies, traditionally sorafenib or lenvatinib as first line therapy. Despite its poor therapeutic response and high rates of resistance, in most countries, sorafenib still remains the globally used first-line treatment for advanced HCC. Thus, preclinical models demonstrating sorafenib resistance are crucial. 3D tumor spheroid models are becoming extremely important as screening platforms for drug therapies. In this paper, we utilized sorafenib resistant Huh7 cell line and LX2 hepatic stellate cell line to establish a sorafenib resistant 3D tumor spheroid model which can be used to test second-line treatment options. Our analysis demonstrated that sorafenib resistant 3D tumor spheroids are also more resistant to regorafenib and exhibit diverse features compared to parental tumor spheroids. Sorafenib resistant spheroids had higher CD24 and EpCAM positive cancer stem cell populations. In addition, several oncogenic kinases are upregulated in the sorafenib resistant spheroids. Importantly, combined inhibition of EGFR and Lyn kinase in sorafenib resistant tumor spheroids are effective in inducing cell death. Our model proved to be an affordable and useful model to mimic drug resistant tumor microenvironment in HCC and provided novel insights into candidates for new combinational therapies.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Muerte Celular , Receptores ErbB , Línea Celular Tumoral , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Microambiente Tumoral
4.
J Gastrointest Cancer ; 52(4): 1294-1308, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34927218

RESUMEN

INTRODUCTION: Three-dimensional (3D) cell culture studies are becoming extremely common because of their capability to mimic tumor architecture, such as cell-cell and cell-ECM interactions, more efficiently than 2D monolayer systems. These interactions have important roles in defining the tumor cell behaviors, such as proliferation, differentiation, and most importantly, tumor drug response. OBJECTIVE: This review aims to provide an overview of the methods for 3D tumor spheroid formation to model human tumors, specifically concentrated on studies using hepatocellular carcinoma (HCC) cells. METHOD: We obtained information from previously published articles. In this review, there is discussion of the scaffold and non-scaffold-based approaches, including hanging drop, bioreactors and 3D bioprinting. RESULTS AND CONCLUSION: The mimicking of the tumor microenvironment (TME) as tumor spheroids could provide a valuable platform for studying tumor biology. Multicellular tumor spheroids are self-assembled cultures of mixed cells (tumor and stromal cells) organized in a 3D arrangement. These spheroids closely mimic the main features of human solid tumors, such as structural organization, central hypoxia, and overall oxygen and nutrient gradients. Hepatocellular carcinoma (HCC) is the most common liver malignancy, and most difficult to overcome because of its drug resistance and tumor heterogeneity. In order to mimic this highly heterogeneous environment, 3D cell culture systems are needed.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Técnicas de Cultivo Tridimensional de Células/métodos , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/fisiología , Neoplasias Hepáticas/fisiopatología , Microambiente Tumoral , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA