Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 556: 117848, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417781

RESUMEN

Proteomic profiling is an effective way to identify biomarkers for Parkinson's disease (PD). Cerebrospinal fluid (CSF) has direct connectivity with the brain and could be a source of finding biomarkers and their clinical implications. Comparative proteomic profiling has shown that a group of differentially displayed proteins exist. The studies performed using conventional and classical tools also supported the occurrence of these proteins. Many studies have highlighted the potential of CSF proteomic profiling for biomarker identification and their clinical applications. Some of these proteins are useful for disease diagnosis and prediction. Proteomic profiling of CSF also has immense potential to distinguish PD from similar neurodegenerative disorders. A few protein biomarkers help in fundamental knowledge generation and clinical interpretation. However, the specific biomarker of PD is not yet known. The use of proteomic approaches in clinical settings is also rare. A large-scale, multi-centric, multi-population and multi-continental study using multiple proteomic tools is warranted. Such a study can provide valuable, comprehensive and reliable information for a better understanding of PD and the development of specific biomarkers. The current article sheds light on the role of CSF proteomic profiling in identifying biomarkers of PD and their clinical implications. The article also explains the achievements, obstacles and hopes for future directions of this approach.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo , Proteómica , Biomarcadores/líquido cefalorraquídeo
2.
Mol Neurobiol ; 61(2): 953-970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37674036

RESUMEN

Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.


Asunto(s)
Antioxidantes , Trastornos Parkinsonianos , Piretrinas , Animales , Humanos , Ratas , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo
3.
Antioxid Redox Signal ; 38(10-12): 824-852, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36401516

RESUMEN

Significance: Mitochondrial proteins regulate the oxidative phosphorylation, cellular metabolism, and free radical generation. Redox modulation alters the mitochondrial proteins and instigates the damage to dopaminergic neurons. Toxicants contribute to Parkinson's disease (PD) pathogenesis in conjunction with aging and genetic factors. While oxidative modulation of a number of mitochondrial proteins is linked to xenobiotic exposure, little is known about its role in the toxicant-induced PD. Understanding the role of redox modulation of mitochondrial proteins in complex cellular events leading to neurodegeneration is highly relevant. Recent Advances: Many toxicants are shown to inhibit complex I or III and elicit free radical production that alters the redox status of mitochondrial proteins. Implication of redox modulation of the mitochondrial proteins makes them a target to comprehend the underlying mechanism of toxicant-induced PD. Critical Issues: Owing to multifactorial etiology, exploration of onset and progression and treatment outcomes needs a comprehensive approach. The article explains about a few mitochondrial proteins that undergo redox changes along with the promising strategies, which help to alleviate the toxicant-induced redox imbalance leading to neurodegeneration. Future Directions: Although mitochondrial proteins are linked to PD, their role in toxicant-induced parkinsonism is not yet completely known. Preservation of antioxidant defense machinery could alleviate the redox modulation of mitochondrial proteins. Targeted antioxidant delivery, use of metal chelators, and activation of nuclear factor erythroid 2-related factor 2, and combinational therapy that encounters multiple free radicals, could ameliorate the redox modulation of mitochondrial proteins and thereby PD progression. Antioxid. Redox Signal. 38, 824-852.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Neuronas Dopaminérgicas/metabolismo
4.
Ageing Res Rev ; 81: 101727, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36038113

RESUMEN

About 10% of the adult population is living with type 2 diabetes mellitus (T2DM) and 1% of the population over 60 years of age is suffering from Parkinson's disease (PD). A school of thought firmly believes that T2DM, an age-related disease, augments PD risk. Such relationship is reflected from the severity of PD symptoms in drug naive subjects possessing T2DM. Onset of Parkinsonian feature in case controls possessing T2DM corroborates the role of hyperglycemia in PD. A few cohort, meta-analysis and animal studies have shown an increased PD risk owing to insulin resistance. High fat diet and role of insulin signaling in the regulation of sugar metabolism, oxidative stress, α-synuclein aggregation and accumulation, inflammatory response and mitochondrial function in PD models and sporadic PD further connect the two. Although little is reported about the implication of PD in hyperglycemia and T2DM, a few studies have also contradicted. Ameliorative effect of anti-diabetic drugs on Parkinsonian symptoms and vague outcome of anti-PD medications in T2DM patients also suggest a link. The article reviews the literature supporting augmented risk of one by the other, analysis of proof of the concept, facts, challenges, future possibilities and standpoint on the subject.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Enfermedad de Parkinson , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Insulina/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína
5.
Mol Neurobiol ; 58(9): 4745-4757, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34173170

RESUMEN

Owing to its lipophilic nature, cypermethrin makes entry into the brain through the blood-brain barrier and causes severe damage to the nigrostriatal dopaminergic neurons after prolonged exposure. Following substantial accrual in the brain, cypermethrin induces the abnormal expression and accumulation of α-synuclein. Besides, cytochrome P450 2E1 (CYP2E1) causes free radical generation leading to lipid peroxidation in toxicant-induced parkinsonism. Conversely, 4-hydroxynonenal (4-HNE), a byproduct of lipid peroxidation, is known to contribute to neuronal damage. The current investigation aimed to explicate the participation of endogenous redox-sensitive proteins in cypermethrin-induced cellular and animal models of parkinsonism. The qualitative and quantitative expressions of selected redox-sensitive proteins were evaluated employing the standard procedures. Cypermethrin reduced the expression of peroxiredoxin 3 (Prx3), thioredoxin 2 (Trx2), and protein deglycase-1 (DJ-1). Knocking down of Prx3, Trx2, or DJ-1 further reduced the level of expression in the cypermethrin-treated group. Reduction in the expression of Prx3, Trx2, or DJ-1 was found to be associated with overexpression of α-synuclein and 4-HNE modification of proteins. Besides, cypermethrin increased the expression of CYP2E1, which was not altered after Prx3 or Trx2 knockdown. However, knocking down the DJ-1 augmented the level of CYP2E1 both in the cypermethrin-treated group and its respective control. The outcomes of the study demonstrate that cypermethrin reduces the level of Prx3, Trx2, and DJ-1 proteins. While the reduction in the expression of selected redox-sensitive proteins leads to α-synuclein overexpression and 4-HNE modification of proteins, DJ-1 attenuation is also linked with increased CYP2E1 expression, which in turn could lead to oxidative stress-mediated neuronal damage.


Asunto(s)
Enfermedad de Parkinson Secundaria/metabolismo , Peroxiredoxina III/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Piretrinas , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Wistar
6.
Neurochem Res ; 46(3): 425-438, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33400024

RESUMEN

Once recognized as one of the most esoteric diseases of the central nervous system, Parkinson's disease (PD) is now deemed to be a chronic illness contributed by the central, autonomic and enteric nervous systems. Most likely, an accumulation of α-synuclein in the central and enteric nervous systems is the key that supports this viewpoint. Constipation, one of the non-motor hallmarks in roughly two-third of PD patients, is regulated by the composition of gut bacteria, which is assumed to set off the enteric α-synuclein accrual. Vagus nerve is suggested to direct the signal for α-synuclein over-expression and accumulation to the brain. While trillions of microorganisms reside in the intestinal tract, only one third of the proportion inhabits evenly in all individuals. Existence of an impaired gut-microbe-brain axis consonant with dysbiosis could be an epicenter of this inexplicable disorder. Any alteration in the structure and function of the gastrointestinal tract owing to exposure of endogenous or exogenous chemicals or toxicants could lead to dysbiosis. However, inconsistency in the symptoms even after exposure to same chemical or toxicant in PD patients emphatically creates a conundrum. While the level of a few specific neurotransmitters and metabolites is influenced by microbes, implication of dysbiosis is still debatable. Nevertheless, the scientific literature is overflowing with the remarkable observations supporting the role of dysbiosis in PD. Lack of specificity to differentially diagnose PD with non-PD or PD-plus syndrome, to identify highly precise drug targets and to develop therapeutic stratagems to encounter the disease on the basis of this approach, causes us to be open-minded about the dysbiosis theory. The article reviews the facts supporting gut dysbiosis as the foremost trigger for PD onset along with disagreements.


Asunto(s)
Disbiosis/complicaciones , Enfermedad de Parkinson/complicaciones , Bacterias/metabolismo , Encéfalo/metabolismo , Disbiosis/metabolismo , Sistema Nervioso Entérico/metabolismo , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
7.
Neurotox Res ; 36(3): 627-644, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31267488

RESUMEN

Devastating motor features, lack of early prognostic tools, and absence of undeviating therapies call for an endeavor to develop biomarkers for Parkinson's disease (PD). A biomarker is anticipated to help in timely and selective diagnosis as well as to hunt for an appropriate treatment option. Peripheral fingerprints can be used to assess the progression, distinguish PD from other related disorders, and monitor the efficacy of therapeutic options. From the last two decades, peripheral blood is constantly targeted in search of an appropriate marker owing to minimal invasive procedure for collection, highly dynamic nature, and insignificant ethical concern. Besides, cerebrospinal fluid (CSF) is also preferred because of its close proximity to the brain. Employing conventional and contemporary sophisticated devices, a number of protein and non-protein entities, mainly metallic elements, have been shown to hold adequate potential to be used as biomarkers for monitoring progression and assessing treatment options for such a distressing neurodegenerative disorder. Classical strategies and relatively newer sophisticated tools, such as proteomics, deciphered the presence of an altered level of highly specific blood- and CSF-specific proteins, free metals, metal-binding proteins, common inflammatory proteins, and overexpressed/modified α-synuclein in PD patients. While several chemical entities are shown to be associated, not even a single protein or metal is converted into unambiguous disease fingerprint. The article provides an update on proteins and metals that are shown to possess enormous potential in the course of biomarker exploration but are unable to deliver a reliable indicator. The review also sheds light on the reasons of ineffective hit to hunt for an authentic fingerprint and proposes the doable ways to translate the output into reality.


Asunto(s)
Enfermedad de Parkinson/diagnóstico , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/líquido cefalorraquídeo , Pronóstico
8.
Curr Drug Metab ; 18(2): 129-137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28088890

RESUMEN

Brain, the centre of the nervous system and an integral part the body, is protected by two anatomical and physiological barriers- Blood-Brain Barrier (BBB) and Blood-Cerebrospinal Fluid Barrier (BCSFB). Blood-Brain Barrier is a very complex and highly organized multicellular structure that shields the brain from harmful substances and invading organisms from the bloodstream and thus offering protection against various brain diseases and injuries. However, it also impede the effective delivery of drug to the brain, thus, preventing treatment of numerous neurological disorders. Even though various traditional approaches such as Intra-Cerebro-Ventricular (ICV) injection, use of implants, disruption of BBB and use of prodrugs have achieved some success in overcoming these barriers, researchers are continuously working for promising alternatives for improved brain drug delivery. Recent breakthroughs in the field of nanotechnology provide an appropriate solution to problems associated with these delivery approaches and thus can be effectively used to treat a wide variety of brain diseases. Thus, nanotechnology promises to bring a great future to the individuals with various brain disorders. This review provides a brief overview of various brain drug delivery approaches along with limitations. In addition, the significance of nanoparticles as drug carrier systems for effective brain specific drug delivery has been highlighted. To show the complexity of the problems to be overcome for improved brain drug delivery, a concise intercellular classification of the BBB along with general transport routes across it is also included.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Transporte Biológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA