Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15347, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961138

RESUMEN

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Asunto(s)
Pollos , Genoma Viral , Fagos de Salmonella , Animales , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/fisiología , Pollos/microbiología , Genómica/métodos , Salmonella/virología , Salmonella/genética , Aves de Corral/microbiología , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Especificidad del Huésped , Microbiología de Alimentos , Fenotipo , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
2.
PLoS One ; 18(11): e0294054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37967102

RESUMEN

The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 µg/mL and 7.81 to 31.25 µg/mL respectively. At concentration 500 µg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 µg/mL pigment where 125 µg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.


Asunto(s)
Antiinfecciosos , Prodigiosina , Serratia/genética , Serratia/metabolismo , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Bangladesh , Antiinfecciosos/metabolismo , Familia de Multigenes , Serratia marcescens/genética , Serratia marcescens/metabolismo
3.
Sci Rep ; 13(1): 16659, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789078

RESUMEN

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is the gold standard method for SARS-CoV-2 detection, and several qRT-PCR kits have been established targeting different genes of the virus. Due to the high mutation rate of these genes, false negative results arise thus complicating the interpretation of the diagnosis and increasing the need of alternative targets. In this study, an alternative approach for the detection of SARS-CoV-2 viral RNA targeting the membrane (M) gene of the virus using qRT-PCR was described. Performance evaluation of this newly developed in-house assay against commercial qRT-PCR kits was done using clinical oropharyngeal specimens of COVID-19 positive patients. The limit of detection was determined using successive dilutions of known copies of SARS-CoV-2 pseudovirus. The M gene based assay was able to detect a minimum of 100 copies of virus/mL indicating its capacity to detect low viral load. The assay showed comparable accuracy, sensitivity and specificity with commercially available kits while detecting all the variants efficiently. The study concluded that the in-house M gene based assay might be an effective alternative for the currently available commercial qRT-PCR kits.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de COVID-19 , Sensibilidad y Especificidad , ARN , ARN Viral/genética , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
4.
Biologicals ; 84: 101714, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804694

RESUMEN

In the present study, we report the complete genome of five Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Bangladesh harboring mutations at Spike protein (E484K, Q677H, D614G, A67V, Q52R, Y144del, H69del, V70del, F888L) assigned to the B.1.525 lineage (Variant of interest). Mutations are also found in viral structural proteins other than spike region (E_L21F, M_I82F, N_A12G and N_T208I) and other mutations (NSP3_T1189I, NSP6_S106del, NSP6_F108del, NSP6_G107del, NSP12_P323F) from all of five B.1.525 SARS-CoV-2 variants of Bangladesh. We have also found four unique mutations from two of SARS-CoV-2 B.1.525 variant of Bangladesh. Among the four unique mutations two mutations (NS7a_L96H, NS7a_Y97D) obtained from strain BCSIR-NILMRC-718, one (NSP3_A1430V) from BCSIR-NILMRC-738 and two mutation including one spike protein mutation (NSP2_L444I, Spike_I68 M) present in BCSIR-AFIP-10 strain. The identification of new mutations will contribute to characterizing SARS-CoV-2, to continue tracking its spread and better understanding its biological and clinical features to take medical countermeasures and vaccines.


Asunto(s)
COVID-19 , Humanos , Bangladesh , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
7.
Inform Med Unlocked ; 40: 101281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265644

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, has globally affected both human health and economy. Several variants with a high potential for reinfection and the ability to evade immunity were detected shortly after the initial reported case of COVID-19. A total of 30 mutations in the spike protein (S) have been reported in the SARS-CoV-2 (BA.2) variant in India and South Africa, while half of these mutations are in the receptor-binding domain and have spread rapidly throughout the world. Drug repurposing offers potential advantages over the discovery of novel drugs, and one is that it can be delivered quickly without lengthy assessments and time-consuming clinical trials. In this study, computational drug design, such as pharmacophore-based virtual screening and MD simulation has been concentrated, in order to find a novel small molecular inhibitor that prevents hACE2 from binding to the receptor binding domain (RBD). three medicinal compound databases: North-East African, North African, and East African were screened and carried out a multi-step screening approach that identified three compounds, which are thymoquinol 2-O-beta-glucopyranoside (C1), lanneaflavonol (C2), and naringenin-4'-methoxy-7-O-Alpha-L-rhamnoside (C3), with excellent anti-viral properties against the RBD of the omicron variant. Furthermore, PAIN assay interference, computation bioactivity prediction, binding free energy, and dissociation constant were used to validate the top hits, which indicated good antiviral activity. The three compounds that were found may be useful against COVID-19, though more research is required. These findings could aid the development of novel therapeutic drugs against the emerging Omicron variant of SARS-CoV-2.

8.
Sci Rep ; 13(1): 4122, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914691

RESUMEN

The impact of SARS-CoV-2 infection on the nasopharyngeal microbiome has not been well characterised. We sequenced genetic material extracted from nasopharyngeal swabs of SARS-CoV-2-positive individuals who were asymptomatic (n = 14), had mild (n = 64) or severe symptoms (n = 11), as well as from SARS-CoV-2-negative individuals who had never-been infected (n = 5) or had recovered from infection (n = 7). Using robust filters, we identified 1345 taxa with approximately 0.1% or greater read abundance. Overall, the severe cohort microbiome was least diverse. Bacterial pathogens were found in all cohorts, but fungal species identifications were rare. Few taxa were common between cohorts suggesting a limited human nasopharynx core microbiome. Genes encoding resistance mechanisms to 10 antimicrobial classes (> 25% sequence coverages, 315 genes, 63 non-redundant) were identified, with ß-lactam resistance genes near ubiquitous. Patients infected with SARS-CoV-2 (asymptomatic and mild) had a greater incidence of antibiotic resistance genes and a greater microbial burden than the SARS-CoV-2-negative individuals. This should be considered when deciding how to treat COVID-19 related bacterial infections.


Asunto(s)
COVID-19 , Coinfección , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Antibacterianos , Disbiosis/genética , Farmacorresistencia Bacteriana , Nasofaringe
9.
PLoS One ; 18(1): e0278134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656835

RESUMEN

We previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome. Our analyses indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of fungi in the NT with inclusion of a high proportion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct mycobiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where S. cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species. Likewise, Recovered humans NT samples were predominated by Aspergillus penicillioides (36.64%), A. keveii (23.36%), A. oryzae (10.05%) and A. pseudoglaucus (4.42%). Conversely, Nannochloropsis oceanica (47.93%), Saccharomyces pastorianus (34.42%), and S. cerevisiae (2.80%) were the top abundant fungal species in Healthy controls nasal swabs. Importantly, 16% commensal fungal species found in the Healthy controls were not detected in either COVID-19 patients or when they were cured from COVID-19 (Recovered). We also detected several altered metabolic pathways correlated with the dysbiosis of fungal mycobiota in COVID-19 patients. Our results suggest that SARS-CoV-2 infection causes significant dysbiosis of mycobiome and related metabolic functions possibly play a determining role in the progression of SARS-CoV-2 pathogenesis. These findings might be helpful for developing mycobiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Saccharomyces cerevisiae/genética , SARS-CoV-2/genética , Disbiosis , Nasofaringe , Perfilación de la Expresión Génica
10.
Front Immunol ; 13: 918692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059456

RESUMEN

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created an urgent global situation. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability and disease comorbidities. The pandemic continues to spread worldwide, despite intense efforts to develop multiple vaccines and therapeutic options against COVID-19. However, the precise role of SARS-CoV-2 in the pathophysiology of the nasopharyngeal tract (NT) is still unfathomable. This study utilized machine learning approaches to analyze 22 RNA-seq data from COVID-19 patients (n = 8), recovered individuals (n = 7), and healthy individuals (n = 7) to find disease-related differentially expressed genes (DEGs). We compared dysregulated DEGs to detect critical pathways and gene ontology (GO) connected to COVID-19 comorbidities. We found 1960 and 153 DEG signatures in COVID-19 patients and recovered individuals compared to healthy controls. In COVID-19 patients, the DEG-miRNA, and DEG-transcription factors (TFs) interactions network analysis revealed that E2F1, MAX, EGR1, YY1, and SRF were the highly expressed TFs, whereas hsa-miR-19b, hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a were the overexpressed miRNAs. Three chemical agents (Valproic Acid, Alfatoxin B1, and Cyclosporine) were abundant in COVID-19 patients and recovered individuals. Mental retardation, mental deficit, intellectual disability, muscle hypotonia, micrognathism, and cleft palate were the significant diseases associated with COVID-19 by sharing DEGs. Finally, the detected DEGs mediated by TFs and miRNA expression indicated that SARS-CoV-2 infection might contribute to various comorbidities. Our results provide the common DEGs between COVID-19 patients and recovered humans, which suggests some crucial insights into the complex interplay between COVID-19 progression and the recovery stage, and offer some suggestions on therapeutic target identification in COVID-19 caused by the SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , MicroARNs , Biomarcadores , COVID-19/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Aprendizaje Automático , MicroARNs/genética , MicroARNs/metabolismo , Pandemias , SARS-CoV-2
11.
J Genet Eng Biotechnol ; 20(1): 136, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125645

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. RESULT: The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. CONCLUSION: This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.

12.
J Med Virol ; 94(4): 1670-1688, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34939673

RESUMEN

Bangladesh is experiencing a second wave of COVID-19 since March 2021, despite the nationwide vaccination drive with ChAdOx1 (Oxford-AstraZeneca) vaccine from early February 2021. Here, we characterized 19 nasopharyngeal swab (NPS) samples from COVID-19 suspect patients using genomic and metagenomic approaches. Screening for SARS-CoV-2 by reverse transcriptase polymerase chain reaction and metagenomic sequencing revealed 17 samples of COVID-19 positive (vaccinated = 10, nonvaccinated = 7) and 2 samples of COVID-19 negative. We did not find any significant correlation between associated factors including vaccination status, age or sex of the patients, diversity or abundance of the coinfected organisms/pathogens, and the abundance of SARS-CoV-2. Though the first wave of the pandemic was dominated by clade 20B, Beta, V2 (South African variant) dominated the second wave (January 2021 to May 2021), while the third wave (May 2021 to September 2021) was responsible for Delta variants of the epidemic in Bangladesh including both vaccinated and unvaccinated infections. Noteworthily, the receptor binding domain (RBD) region of S protein of all the isolates harbored similar substitutions including K417N, E484K, and N501Y that signify the Beta, while D614G, D215G, D80A, A67V, L18F, and A701V substitutions were commonly found in the non-RBD region of Spike proteins. ORF7b and ORF3a genes underwent a positive selection (dN/dS ratio 1.77 and 1.24, respectively), while the overall S protein of the Bangladeshi SARS-CoV-2 isolates underwent negative selection pressure (dN/dS = 0.621). Furthermore, we found different bacterial coinfections like Streptococcus agalactiae, Neisseria meningitidis, Elizabethkingia anophelis, Stenotrophomonas maltophilia, Klebsiella pneumoniae, and Pseudomonas plecoglossicida, expressing a number of antibiotic resistance genes such as tetA and tetM. Overall, this approach provides valuable insights on the SARS-CoV-2 genomes and microbiome composition from both vaccinated and nonvaccinated patients in Bangladesh.


Asunto(s)
COVID-19/virología , ChAdOx1 nCoV-19/administración & dosificación , Metagenómica , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/virología , Bangladesh/epidemiología , COVID-19/epidemiología , COVID-19/microbiología , COVID-19/prevención & control , Coinfección/epidemiología , Coinfección/microbiología , Coinfección/virología , Farmacorresistencia Bacteriana/genética , Femenino , Genoma Bacteriano/genética , Genoma Viral/genética , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , Mutación , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Selección Genética , Vacunación , Proteínas Virales/genética , Adulto Joven
13.
Sci Rep ; 11(1): 24042, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911967

RESUMEN

The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.


Asunto(s)
Bacterias/clasificación , COVID-19/microbiología , Nasofaringe/microbiología , SARS-CoV-2/genética , Análisis de Secuencia de ARN/métodos , Adulto , Anciano , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Estudios de Casos y Controles , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , Simbiosis , Adulto Joven
14.
Acta Microbiol Immunol Hung ; 64(2): 151-164, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597684

RESUMEN

Recently, we reported the induction of protective immunity by environmental Escherichia albertii strain DM104 against Shigella dysenteriae in guinea pig model. In this study, we assessed three different immunization routes, such as intranasal, oral, and intrarectal routes, and revealed differences in immune responses by measuring both the serum IgG and mucosal IgA antibody titers. Protective efficacy of different routes of immunization was also determined by challenging immunized guinea pigs against live S. dysenteriae. It was found that intranasal immunization showed promising results in terms of antibody response and protective efficacy. All these results reconfirm our previous findings and additionally point out that the intranasal immunization of the environmental E. albertii strain DM104 in guinea pig model can be a better live vaccine candidate against shigellosis.


Asunto(s)
Vacunas Bacterianas/inmunología , Disentería Bacilar/prevención & control , Escherichia/inmunología , Shigella dysenteriae/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Protección Cruzada , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Escherichia/genética , Cobayas , Humanos , Masculino , Serogrupo , Shigella dysenteriae/genética , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...