Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9884, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688931

RESUMEN

COVID-19 is an infectious respiratory disease that has had a significant impact, resulting in a range of outcomes including recovery, continued health issues, and the loss of life. Among those who have recovered, many experience negative health effects, particularly influenced by demographic factors such as gender and age, as well as physiological and neurological factors like sleep patterns, emotional states, anxiety, and memory. This research aims to explore various health factors affecting different demographic profiles and establish significant correlations among physiological and neurological factors in the post-COVID-19 state. To achieve these objectives, we have identified the post-COVID-19 health factors and based on these factors survey data were collected from COVID-recovered patients in Bangladesh. Employing diverse machine learning algorithms, we utilised the best prediction model for post-COVID-19 factors. Initial findings from statistical analysis were further validated using Chi-square to demonstrate significant relationships among these elements. Additionally, Pearson's coefficient was utilized to indicate positive or negative associations among various physiological and neurological factors in the post-COVID-19 state. Finally, we determined the most effective machine learning model and identified key features using analytical methods such as the Gini Index, Feature Coefficients, Information Gain, and SHAP Value Assessment. And found that the Decision Tree model excelled in identifying crucial features while predicting the extent of post-COVID-19 impact.


Asunto(s)
COVID-19 , Aprendizaje Automático , Humanos , COVID-19/epidemiología , COVID-19/psicología , COVID-19/virología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Bangladesh/epidemiología , SARS-CoV-2/aislamiento & purificación , Adulto Joven , Ansiedad , Anciano , Adolescente
2.
Neural Comput Appl ; 35(18): 13503-13527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213320

RESUMEN

Covid text identification (CTI) is a crucial research concern in natural language processing (NLP). Social and electronic media are simultaneously adding a large volume of Covid-affiliated text on the World Wide Web due to the effortless access to the Internet, electronic gadgets and the Covid outbreak. Most of these texts are uninformative and contain misinformation, disinformation and malinformation that create an infodemic. Thus, Covid text identification is essential for controlling societal distrust and panic. Though very little Covid-related research (such as Covid disinformation, misinformation and fake news) has been reported in high-resource languages (e.g. English), CTI in low-resource languages (like Bengali) is in the preliminary stage to date. However, automatic CTI in Bengali text is challenging due to the deficit of benchmark corpora, complex linguistic constructs, immense verb inflexions and scarcity of NLP tools. On the other hand, the manual processing of Bengali Covid texts is arduous and costly due to their messy or unstructured forms. This research proposes a deep learning-based network (CovTiNet) to identify Covid text in Bengali. The CovTiNet incorporates an attention-based position embedding feature fusion for text-to-feature representation and attention-based CNN for Covid text identification. Experimental results show that the proposed CovTiNet achieved the highest accuracy of 96.61±.001% on the developed dataset (BCovC) compared to the other methods and baselines (i.e. BERT-M, IndicBERT, ELECTRA-Bengali, DistilBERT-M, BiLSTM, DCNN, CNN, LSTM, VDCNN and ACNN).

3.
Eng Rep ; : e12572, 2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36247344

RESUMEN

Since the advent of the worldwide COVID-19 pandemic, analyzing public sentiment has become one of the major concerns for policy and decision-makers. While the priority is to curb the spread of the virus, mass population (user) sentiment analysis is equally important. Though sentiment analysis using different state-of-the-art technologies has been focused on during the COVID-19 pandemic, the reasons behind the variations in public sentiment are yet to be explored. Moreover, how user sentiment varies due to the COVID-19 pandemic from a cross-country perspective has been less focused on. Therefore, the objectives of this study are: to identify the most effective machine learning (ML) technique for classifying public sentiments, to analyze the variations of public sentiment across the globe, and to find the critical contributing factors to sentiment variations. To attain the objectives, 12,000 tweets, 3000 each from the USA, UK, and Bangladesh, were rigorously annotated by three independent reviewers. Based on the labeled tweets, four different boosting ML models, namely, CatBoost, gradient boost, AdaBoost, and XGBoost, are investigated. Next, the top performed ML model predicted sentiment of 300,000 data (100,000 from each country). The public perceptions have been analyzed based on the labeled data. As an outcome, the CatBoost model showed the highest (85.8%) F1-score, followed by gradient boost (84.3%), AdaBoost (78.9%), and XGBoost (83.1%). Second, it was revealed that during the time of the COVID-19 pandemic, the sentiments of the people of the three countries mainly were negative, followed by positive and neutral. Finally, this study identified a few critical concerns that impact primarily varying public sentiment around the globe: lockdown, quarantine, hospital, mask, vaccine, and the like.

4.
Inform Med Unlocked ; 31: 100969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620215

RESUMEN

The COVID-19 outbreak has created effects on everyday life worldwide. Many research teams at major pharmaceutical companies and research institutes in various countries have been producing vaccines since the beginning of the outbreak. There is an impact of gender on vaccine responses, acceptance, and outcomes. Worldwide promotion of the COVID-19 vaccine additionally generates a huge amount of discussions on social media platforms about diverse factors of vaccines including protection and efficacy. Twitter is considered one of the most well-known social media platforms which have been widely used to share a public opinion on vaccine-related problems in the COVID-19 pandemic. However, there is a lack of research work to analyze the public perception of COVID-19 vaccines systematically from a gender perspective. In this paper, we perform an in-depth analysis of the coronavirus vaccine-related tweets to understand the people's sentiment towards various vaccine brands corresponding to the gender level. The proposed method focuses on the effect of COVID-19 vaccines on gender by taking into account descriptive, diagnostic, predictive, and prescriptive analytics on the Twitter dataset. We also conduct experiments with deep learning models to determine the sentiment polarities of tweets, which are positive, neutral, and negative. The results reveal that LSTM performs better compared to other models with an accuracy rate of 85.7%.

5.
Inform Med Unlocked ; 30: 100916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342787

RESUMEN

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed i N a t 2021 _ M i n i _ S w A V _ 1 k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( I m a g e N e t _ C h e s t X - r a y 14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.

6.
SN Comput Sci ; 3(2): 158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35194580

RESUMEN

Artificial intelligence (AI) is a leading technology of the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR), with the capability of incorporating human behavior and intelligence into machines or systems. Thus, AI-based modeling is the key to build automated, intelligent, and smart systems according to today's needs. To solve real-world issues, various types of AI such as analytical, functional, interactive, textual, and visual AI can be applied to enhance the intelligence and capabilities of an application. However, developing an effective AI model is a challenging task due to the dynamic nature and variation in real-world problems and data. In this paper, we present a comprehensive view on "AI-based Modeling" with the principles and capabilities of potential AI techniques that can play an important role in developing intelligent and smart systems in various real-world application areas including business, finance, healthcare, agriculture, smart cities, cybersecurity and many more. We also emphasize and highlight the research issues within the scope of our study. Overall, the goal of this paper is to provide a broad overview of AI-based modeling that can be used as a reference guide by academics and industry people as well as decision-makers in various real-world scenarios and application domains.

7.
SN Comput Sci ; 3(2): 135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35072102

RESUMEN

Emotion classification in text has growing interest among NLP experts due to the enormous availability of people's emotions and its emergence on various Web 2.0 applications/services. Emotion classification in the Bengali texts is also gradually being considered as an important task for sports, e-commerce, entertainments, and security applications. However, It is a very critical task to develop an automatic emotion classification system for low-resource languages such as, Bengali. Scarcity of resources and deficiency of benchmark corpora make the task more complicated. Thus, the development of a benchmark corpus is the prerequisite to develop an emotion classifier for Bengali texts. This paper describes the development of an emotional corpus (hereafter called 'BEmoC') for classifying six emotions in Bengali texts. The corpus development process consists of four key steps: data crawling, pre-processing, labelling, and verification. A total of 7000 texts are labelled into six basic emotion categories such as anger, fear, surprise, sadness, joy, and disgust, respectively. Dataset evaluation with 0.969 Cohen's κ score indicates the close agreement between the corpus annotators and the expert. The analysis of evaluation also represents that the distribution of emotion words obeys Zipf's law. Moreover, the results of BEmoC analysis shown in terms of coding reliability, emotion density, and most frequent emotion words, respectively.

8.
Healthcare (Basel) ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36611491

RESUMEN

Good vaccine safety and reliability are essential for successfully countering infectious disease spread. A small but significant number of adverse reactions to COVID-19 vaccines have been reported. Here, we aim to identify possible common factors in such adverse reactions to enable strategies that reduce the incidence of such reactions by using patient data to classify and characterise those at risk. We examined patient medical histories and data documenting postvaccination effects and outcomes. The data analyses were conducted using a range of statistical approaches followed by a series of machine learning classification algorithms. In most cases, a group of similar features was significantly associated with poor patient reactions. These included patient prior illnesses, admission to hospitals and SARS-CoV-2 reinfection. The analyses indicated that patient age, gender, taking other medications, type-2 diabetes, hypertension, allergic history and heart disease are the most significant pre-existing factors associated with the risk of poor outcome. In addition, long duration of hospital treatments, dyspnoea, various kinds of pain, headache, cough, asthenia, and physical disability were the most significant clinical predictors. The machine learning classifiers that are trained with medical history were also able to predict patients with complication-free vaccination and have an accuracy score above 90%. Our study identifies profiles of individuals that may need extra monitoring and care (e.g., vaccination at a location with access to comprehensive clinical support) to reduce negative outcomes through classification approaches.

9.
SN Comput Sci ; 2(6): 420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34426802

RESUMEN

Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (AI) is nowadays considered as a core technology of today's Fourth Industrial Revolution (4IR or Industry 4.0). Due to its learning capabilities from data, DL technology originated from artificial neural network (ANN), has become a hot topic in the context of computing, and is widely applied in various application areas like healthcare, visual recognition, text analytics, cybersecurity, and many more. However, building an appropriate DL model is a challenging task, due to the dynamic nature and variations in real-world problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines that hamper development at the standard level. This article presents a structured and comprehensive view on DL techniques including a taxonomy considering various types of real-world tasks like supervised or unsupervised. In our taxonomy, we take into account deep networks for supervised or discriminative learning, unsupervised or generative learning as well as hybrid learning and relevant others. We also summarize real-world application areas where deep learning techniques can be used. Finally, we point out ten potential aspects for future generation DL modeling with research directions. Overall, this article aims to draw a big picture on DL modeling that can be used as a reference guide for both academia and industry professionals.

10.
SN Comput Sci ; 2(5): 377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34278328

RESUMEN

The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.

11.
SN Comput Sci ; 2(3): 160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33778771

RESUMEN

In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study's key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

12.
Sensors (Basel) ; 20(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349242

RESUMEN

Over the last few decades, the proliferation of the Internet of Things (IoT) has produced an overwhelming flow of data and services, which has shifted the access control paradigm from a fixed desktop environment to dynamic cloud environments. Fog computing is associated with a new access control paradigm to reduce the overhead costs by moving the execution of application logic from the centre of the cloud data sources to the periphery of the IoT-oriented sensor networks. Indeed, accessing information and data resources from a variety of IoT sources has been plagued with inherent problems such as data heterogeneity, privacy, security and computational overheads. This paper presents an extensive survey of security, privacy and access control research, while highlighting several specific concerns in a wide range of contextual conditions (e.g., spatial, temporal and environmental contexts) which are gaining a lot of momentum in the area of industrial sensor and cloud networks. We present different taxonomies, such as contextual conditions and authorization models, based on the key issues in this area and discuss the existing context-sensitive access control approaches to tackle the aforementioned issues. With the aim of reducing administrative and computational overheads in the IoT sensor networks, we propose a new generation of Fog-Based Context-Aware Access Control (FB-CAAC) framework, combining the benefits of the cloud, IoT and context-aware computing; and ensuring proper access control and security at the edge of the end-devices. Our goal is not only to control context-sensitive access to data resources in the cloud, but also to move the execution of an application logic from the cloud-level to an intermediary-level where necessary, through adding computational nodes at the edge of the IoT sensor network. A discussion of some open research issues pertaining to context-sensitive access control to data resources is provided, including several real-world case studies. We conclude the paper with an in-depth analysis of the research challenges that have not been adequately addressed in the literature and highlight directions for future work that has not been well aligned with currently available research.

13.
IEEE Trans Artif Intell ; 1(3): 258-270, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35784006

RESUMEN

Artificial intelligence (AI) and machine learning (ML) have caused a paradigm shift in healthcare that can be used for decision support and forecasting by exploring medical data. Recent studies have shown that AI and ML can be used to fight COVID-19. The objective of this article is to summarize the recent AI- and ML-based studies that have addressed the pandemic. From an initial set of 634 articles, a total of 49 articles were finally selected through an inclusion-exclusion process. In this article, we have explored the objectives of the existing studies (i.e., the role of AI/ML in fighting the COVID-19 pandemic); the context of the studies (i.e., whether it was focused on a specific country-context or with a global perspective; the type and volume of the dataset; and the methodology, algorithms, and techniques adopted in the prediction or diagnosis processes). We have mapped the algorithms and techniques with the data type by highlighting their prediction/classification accuracy. From our analysis, we categorized the objectives of the studies into four groups: disease detection, epidemic forecasting, sustainable development, and disease diagnosis. We observed that most of these studies used deep learning algorithms on image-data, more specifically on chest X-rays and CT scans. We have identified six future research opportunities that we have summarized in this paper. Impact Statement: Artificial intelligence (AI) and machine learning(ML) methods have been widely used to assist in the fight against COVID-19 pandemic. A very few in-depth literature reviews have been conducted to synthesize the knowledge and identify future research agenda including a previously published review on data science for COVID-19 in this article. In this article, we synthesized reviewed recent literature that focuses on the usages and applications of AI and ML to fight against COVID-19. We have identified seven future research directions that would guide researchers to conduct future research. The most significant of these are: develop new treatment options, explore the contextual effect and variation in research outcomes, support the health care workforce, and explore the effect and variation in research outcomes based on different types of data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...