Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vision (Basel) ; 8(2)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804356

RESUMEN

The ability to make on-field, split-second decisions is critical for National Football League (NFL) game officials. Multiple principles in visual function are critical for accuracy and precision of these play calls, including foveation time and unobstructed line of sight, static visual acuity, dynamic visual acuity, vestibulo-ocular reflex, and sufficient visual field. Prior research has shown that a standardized curriculum in these neuro-ophthalmic principles have demonstrated validity and self-rated improvements in understanding, confidence, and likelihood of future utilization by NFL game officials to maximize visual performance during officiating. Virtual reality technology may also be able to help optimize understandings of specific neuro-ophthalmic principles and simulate real-life gameplay. Personal communication between authors and NFL officials and leadership have indicated that there is high interest in 3D virtual on-field training for NFL officiating. In this manuscript, we review the current and past research in this space regarding a neuro-ophthalmic curriculum for NFL officials. We then provide an overview our current visualization engineering process in taking real-life NFL gameplay 2D data and creating 3D environments for virtual reality gameplay training for football officials to practice plays that highlight neuro-ophthalmic principles. We then review in-depth the physiology behind these principles and discuss strategies to implement these principles into virtual reality for football officiating.

3.
Life Sci Space Res (Amst) ; 41: 100-109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670636

RESUMEN

The phrase "Bench-to-Bedside" is a well-known phrase in medicine, highlighting scientific discoveries that directly translate to impacting patient care. Key examples of translational research include identification of key molecular targets in diseases and development of diagnostic laboratory tests for earlier disease detection. Bridging these scientific advances to the bedside/clinic has played a meaningful impact in numerous patient lives. The spaceflight environment poses a unique opportunity to also make this impact; the nature of harsh extraterrestrial conditions and medically austere and remote environments push for cutting-edge technology innovation. Many of these novel technologies built for the spaceflight environment also have numerous benefits for human health on Earth. In this manuscript, we focus on "Spaceflight-to-Eye Clinic" and discuss technologies built for the spaceflight environment that eventually helped to optimize ophthalmic health on Earth (e.g., LADAR for satellite docking now utilized in eye-tracking technology for LASIK). We also discuss current technology research for spaceflight associated neuro-ocular syndrome (SANS) that may also be applied to terrestrial ophthalmic health. Ultimately, various advances made to enable to the future of space exploration have also advanced the ophthalmic health of individuals on Earth.


Asunto(s)
Atención a la Salud , Vuelo Espacial , Humanos , Oftalmopatías , Medicina Aeroespacial/métodos , Investigación Biomédica Traslacional/métodos , Ingravidez , Oftalmología/métodos
4.
J Neuroophthalmol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659103

RESUMEN

BACKGROUND: To determine whether a neuro-ophthalmic curriculum would improve National Football League (NFL) game officials' self-rated knowledge and interest in neuro-ophthalmic principles to improve precision and accuracy of NFL play-calling. METHODS: The formalized and structured neuro-ophthalmic principles (NOP) curriculum was introduced to 121 NFL game officials, 17 replay officials, and 4 officiating staff who attended the NFL Official Training Camp in Irving, Texas, on September 8 and 9, 2023. Before and after the lecture and videos were introduced, participants completed an optional hard-copy feedback form pertaining to self-reported NOP knowledge, likelihood of using said terms, and interest in future content of NOP applicable NFL officiating. Paired 2-tailed t tests were used for statistical analysis to directly compare the self-reported knowledge before and after the neuro-ophthalmic curriculum introduction. RESULTS: One hundred forty-two participants completed the prelecture and postlecture feedback forms self-reported knowledge after the NOP curriculum was given to the NFL officiating staff. All (142/142) participants completed a survey. There was a statistically significant improvement in the mean ratings of the prelecture vs. postlecture understanding of the specific neuro-ophthalmic terms pertinent to NFL game officials (2.6 [95% CI, 2.3-3.0] vs. 7.9 [95% CI, 7.6-8.2], P < 0.001) and 2.7 [95% CI, 2.3-3.0] vs. 7.7 [95% CI, 7.4-8.0]), respectively. There was a statistically significant greater likelihood of using said terms prelecture vs. postlecture (2.9 [95% CI, 2.4-3.4] vs. 7.5 [95% CI, 7.2-7.9], P < 0.001). CONCLUSIONS: This study found a statistically significant improvement in neuro-ophthalmic knowledge and a greater likelihood of using NOP terms following the NOP curriculum. NFL game officials, replay officials, and staff are interested in expanding their knowledge in the vision science of neuro-ophthalmic concepts and applications involved in play-calling. We hope that our pilot data will lead to a model of education that will improve the precision and accuracy of NFL play-calls by officials on game days.

5.
Diagnostics (Basel) ; 14(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38535059

RESUMEN

Ocular health is currently a major concern for astronauts on current and future long-duration spaceflight missions. Spaceflight-associated neuro-ocular syndrome (SANS) is a collection of ophthalmic and neurologic findings that is one potential physiologic barrier to interplanetary spaceflight. Since its initial report in 2011, our understanding of SANS has advanced considerably, with a primary focus on posterior ocular imaging including fundus photography and optical coherence tomography. However, there may be changes to the anterior segment that have not been identified. Additional concerns to ocular health in space include corneal damage and radiation-induced cataract formation. Given these concerns, precision anterior segment imaging of the eye would be a valuable addition to future long-duration spaceflights. The purpose of this paper is to review ultrasound biomicroscopy (UBM) and its potential as a noninvasive, efficient imaging modality for spaceflight. The analysis of UBM for spaceflight is not well defined in the literature, and such technology may help to provide further insights into the overall anatomical changes in the eye in microgravity.

12.
Ir J Med Sci ; 193(1): 531-532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37365445

RESUMEN

Apple unveiled its highly anticipated mixed-reality headset, called the Apple Vision Pro on June 5, 2023. The primary user interface relies on eye tracking, hand, gestures, cameras, and sensors, eliminating the need for physical controllers such as keyboards or touch screens. The refined capabilities of this technology can be utilized for diverse purposes, including but not limited to medical and surgical education, and remote medical consultations. All things considered, virtual reality is a highly promising area for the future of medicine, from improving medical education and vision screening to physical and psychological rehabilitation. We look forward to further innovations in this exciting area for years to come.


Asunto(s)
Educación Médica , Malus , Realidad Virtual , Humanos , Interfaz Usuario-Computador
18.
Ann Biomed Eng ; 51(12): 2708-2721, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37855949

RESUMEN

Ophthalmic biomarkers have long played a critical role in diagnosing and managing ocular diseases. Oculomics has emerged as a field that utilizes ocular imaging biomarkers to provide insights into systemic diseases. Advances in diagnostic and imaging technologies including electroretinography, optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy, fluorescence lifetime imaging ophthalmoscopy, and OCT angiography have revolutionized the ability to understand systemic diseases and even detect them earlier than clinical manifestations for earlier intervention. With the advent of increasingly large ophthalmic imaging datasets, machine learning models can be integrated into these ocular imaging biomarkers to provide further insights and prognostic predictions of neurodegenerative disease. In this manuscript, we review the use of ophthalmic imaging to provide insights into neurodegenerative diseases including Alzheimer Disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, and Huntington Disease. We discuss recent advances in ophthalmic technology including eye-tracking technology and integration of artificial intelligence techniques to further provide insights into these neurodegenerative diseases. Ultimately, oculomics opens the opportunity to detect and monitor systemic diseases at a higher acuity. Thus, earlier detection of systemic diseases may allow for timely intervention for improving the quality of life in patients with neurodegenerative disease.


Asunto(s)
Inteligencia Artificial , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Calidad de Vida , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Biomarcadores
19.
Brain Sci ; 13(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37626504

RESUMEN

Spaceflight associated neuro-ocular syndrome (SANS) is a unique phenomenon that has been observed in astronauts who have undergone long-duration spaceflight (LDSF). The syndrome is characterized by distinct imaging and clinical findings including optic disc edema, hyperopic refractive shift, posterior globe flattening, and choroidal folds. SANS serves a large barrier to planetary spaceflight such as a mission to Mars and has been noted by the National Aeronautics and Space Administration (NASA) as a high risk based on its likelihood to occur and its severity to human health and mission performance. While it is a large barrier to future spaceflight, the underlying etiology of SANS is not well understood. Current ophthalmic imaging onboard the International Space Station (ISS) has provided further insights into SANS. However, the spaceflight environment presents with unique challenges and limitations to further understand this microgravity-induced phenomenon. The advent of artificial intelligence (AI) has revolutionized the field of imaging in ophthalmology, particularly in detection and monitoring. In this manuscript, we describe the current hypothesized pathophysiology of SANS and the medical diagnostic limitations during spaceflight to further understand its pathogenesis. We then introduce and describe various AI frameworks that can be applied to ophthalmic imaging onboard the ISS to further understand SANS including supervised/unsupervised learning, generative adversarial networks, and transfer learning. We conclude by describing current research in this area to further understand SANS with the goal of enabling deeper insights into SANS and safer spaceflight for future missions.

20.
Life Sci Space Res (Amst) ; 38: 79-86, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37481311

RESUMEN

The National Aeronautics and Space Administration (NASA) has rigorously documented a group of neuro-ophthalmic findings in astronauts during and after long-duration spaceflight known as spaceflight associated neuro-ocular syndrome (SANS). For astronaut safety and mission effectiveness, understanding SANS and countermeasure development are of utmost importance. Although the pathogenesis of SANS is not well defined, a leading hypothesis is that SANS might relate to a sub-clinical increased intracranial pressure (ICP) from cephalad fluid shifts in microgravity. However, no direct ICP measurements are available during spaceflight. To further understand the role of ICP in SANS, pupillometry can serve as a promising non-invasive biomarker for spaceflight environment as ICP is correlated with the pupil variables under illumination. Extended reality (XR) can help to address certain limitations in current methods for efficient pupil testing during spaceflight. We designed a protocol to quantify parameters of pupil reactivity in XR with an equivalent time duration of illumination on each eye compared to pre-existing, non-XR methods. Throughout the assessment, the pupil diameter data was collected using HTC Vive Pro-VR headset, thanks to its eye-tracking capabilities. Finally, the data was used to compute several pupil variables. We applied our methods to 36 control subjects. Pupil variables such as maximum and minimum pupil size, constriction amplitude, average constriction amplitude, maximum constriction velocity, latency and dilation velocity were computed for each control data. We compared our methods of calculation of pupil variables with the non-XR methods existing in the literature. Distributions of the pupil variables such as latency, constriction amplitude, and velocity of 36 control data displayed near-identical results from the non-XR literature for normal subjects. We propose a new method to evaluate pupil reactivity with XR technology to further understand ICP's role in SANS and provide further insight into SANS countermeasure development for future spaceflight.


Asunto(s)
Astronautas , Vuelo Espacial , Estados Unidos , Humanos , Pupila , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...