Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 127(7-8): 1098-1110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495300

RESUMEN

Bipolaris oryzae, causing brown spot disease in rice, is one of the neglected diseases reducing rice productivity. Limited knowledge is available on the genetics of host-pathogen interaction. Here, we used time-course transcriptome sequencing to elucidate the differential transcriptional responses of the pathogen genes in two contradictory infection-responsive rice hosts. Evaluation of transcriptome data showed similar regulation of fungal genes within susceptible (1733) and resistant (1846) hosts at an early stage however, in the later stage, the number was significantly higher in susceptible (2877) compared to resistant (1955) hosts. GO enrichment terms for upregulated genes showed a similar pattern in both the hosts at an early stage, but in the later stage terms related to degradation of carbohydrates, carbohydrate transport, and pathogenesis are enriched extensively within the susceptible host. Likewise, similar expression responses were observed with the secretory and effector proteins. Plant pathogenic homologs genes such as those involved in appressorium and conidia formation, host cell wall degradative enzymes, etc. were reported to be highly upregulated within the susceptible host. This study predicts the successful establishment of B. oryzae BO1 in both the host surfaces at an early stage, while disease progression only occurs in the susceptible host in later stage.


Asunto(s)
Magnaporthe , Oryza , Transcriptoma , Oryza/microbiología , Perfilación de la Expresión Génica , Genes Fúngicos , Enfermedades de las Plantas/microbiología
2.
Planta ; 255(1): 28, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34962611

RESUMEN

MAIN CONCLUSION: In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Fitomejoramiento , Plantas Modificadas Genéticamente/genética
3.
Gene ; 755: 144909, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569720

RESUMEN

In the microbial world, bacteria are the most effective agents in petroleum hydrocarbons (PHs) degradation, utilization/mineralization and they serve as essential degraders of crude oil contaminated environment. Some genes and traits are involved in the hydrocarbon utilization process for which transcriptome analyses are important to identify differentially expressed genes (DEGs) among different conditions, leading to a new understanding of genes or pathways associated with crude oil degradation. In this work, three crude oil utilizing Pseudomonas aeruginosa strains designated as N002, TP16 and J001 subjected to transcriptome analyses revealed a total of 81, 269 and 137 significant DEGs. Among them are 80 up-regulated genes and one downregulated gene of N002, 121 up- regulated and 148 down-regulated genes of TP16, 97 up-regulated and 40 down-regulated genes of J001 which are involved in various metabolic pathways. TP16 strain has shown more number of DEGs upon crude oil treatment in comparison to the other two strains. Through quantitative real time polymerase chain reaction (qRT-PCR), the selected DEGs of each strain from transcriptome data were substantiated. The results have shown that the up- regulated and down-regulated genes observed by qRT-PCR were consistent with transcriptome data. Taken together, our transcriptome results have revealed that TP16 is a potential P. aeruginosa strain for functional analysis of identified potential DEGs involved in crude oil degradation.


Asunto(s)
Biodegradación Ambiental , Petróleo/microbiología , Pseudomonas aeruginosa/genética , Bacterias/genética , Regulación hacia Abajo , Contaminantes Ambientales/efectos adversos , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/genética , Hidrocarburos/metabolismo , Transcriptoma/genética , Regulación hacia Arriba
4.
Mol Biotechnol ; 61(2): 153-172, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30600447

RESUMEN

Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.


Asunto(s)
Productos Agrícolas/fisiología , Edición Génica , Proteínas de Plantas/genética , Estrés Fisiológico , Factores de Transcripción/genética , Sistemas CRISPR-Cas , Productos Agrícolas/clasificación , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...