Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Sci Adv ; 7(52): eabb3673, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936468

RESUMEN

Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.

4.
Sci Rep ; 11(1): 11414, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075077

RESUMEN

ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse lines: ADAM10- and ADAM17-deficient lines, and a line deficient for both proteases. In the model of partial hepatectomy, double deficient mice exhibited decreased AKT phosphorylation, decreased release of EGFR activating factors and lower shedding of HGF receptor c-Met. Thus, simultaneous ablation of ADAM10 and ADAM17 resulted in inhibited EGFR signalling, while HGF/c-Met signalling pathway was enhanced. In contrast, antagonistic effects of ADAM10 and ADAM17 were observed in the model of chronic CCl4 intoxication. While ADAM10-deficient mice develop more severe fibrosis manifested by high ALT, AST, ALP and higher collagen deposition, combined deficiency of ADAM10 and ADAM17 surprisingly results in comparable degree of liver damage as in control littermates. Therefore, ADAM17 deficiency is not protective in fibrosis development per se, but can ameliorate the damaging effect of ADAM10 deficiency on liver fibrosis development. Furthermore, we show that while ablation of ADAM17 resulted in decreased shedding of TNF RI, ADAM10 deficiency leads to increased levels of soluble TNF RI in serum. In conclusion, hepatocyte-derived ADAM10 and ADAM17 are important regulators of growth receptor signalling and TNF RI release, and pathological roles of these proteases are dependent on the cellular context.


Asunto(s)
Proteína ADAM10/fisiología , Proteína ADAM17/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Hepatopatías , Regeneración Hepática , Hígado , Proteínas de la Membrana/fisiología , Animales , Células Cultivadas , Fibrosis/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células
5.
Mucosal Immunol ; 14(3): 691-702, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674761

RESUMEN

Plectin, a highly versatile cytolinker protein, provides tissues with mechanical stability through the integration of intermediate filaments (IFs) with cell junctions. Here, we hypothesize that plectin-controlled cytoarchitecture is a critical determinant of the intestinal barrier function and homeostasis. Mice lacking plectin in an intestinal epithelial cell (IEC; PleΔIEC) spontaneously developed colitis characterized by extensive detachment of IECs from the basement membrane (BM), increased intestinal permeability, and inflammatory lesions. Moreover, plectin expression was reduced in the colons of ulcerative colitis (UC) patients and negatively correlated with the severity of colitis. Mechanistically, plectin deficiency in IECs led to aberrant keratin filament (KF) network organization and the formation of dysfunctional hemidesmosomes (HDs) and intercellular junctions. In addition, the hemidesmosomal α6ß4 integrin (Itg) receptor showed attenuated association with KFs, and protein profiling revealed prominent downregulation of junctional constituents. Consistent with the effects of plectin loss in the intestinal epithelium, plectin-deficient IECs exhibited remarkably reduced mechanical stability and limited adhesion capacity in vitro. Feeding mice with a low-residue liquid diet that reduced mechanical stress and antibiotic treatment successfully mitigated epithelial damage in the PleΔIEC colon.


Asunto(s)
Colitis Ulcerosa/metabolismo , Colitis/metabolismo , Colon/patología , Mucosa Intestinal/metabolismo , Plectina/metabolismo , Adulto , Anciano , Animales , Colitis/prevención & control , Colitis Ulcerosa/prevención & control , Desmosomas/genética , Desmosomas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/patología , Queratinas/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Plectina/genética , Adulto Joven
6.
J Vis Exp ; (154)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31904017

RESUMEN

Hepatocytes are the central cells of the liver responsible for its metabolic function. As such, they form a uniquely polarized epithelium, in which two or more hepatocytes contribute apical membranes to form a bile canalicular network through which bile is secreted. Hepatocyte polarization is essential for correct canalicular formation and depends on interactions between the hepatocyte cytoskeleton, cell-cell contacts, and the extracellular matrix. In vitro studies of hepatocyte cytoskeleton involvement in canaliculi formation and its response to pathological situations are handicapped by the lack of cell culture, which would closely resemble the canaliculi network structure in vivo. Described here is a protocol for the isolation of mouse hepatocytes from the adult mouse liver using a modified collagenase perfusion technique. Also described is the production of culture in a 3D collagen sandwich setting, which is used for immunolabeling of cytoskeletal components to study bile canalicular formation and its response to treatments in vitro. It is shown that hepatocyte 3D collagen sandwich cultures respond to treatments with toxins (ethanol) or actin cytoskeleton altering drugs (e.g., blebbistatin) and serve as a valuable tool for in vitro studies of bile canaliculi formation and function.


Asunto(s)
Canalículos Biliares/patología , Colágeno/metabolismo , Citoesqueleto/metabolismo , Hepatocitos/patología , Citoesqueleto de Actina , Actinas/metabolismo , Animales , Bilis/metabolismo , Canalículos Biliares/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Hepatocitos/metabolismo , Ratones , Microtúbulos/metabolismo
7.
J Hepatol ; 68(5): 1006-1017, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29273475

RESUMEN

BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.


Asunto(s)
Sistema Biliar/metabolismo , Sistema Biliar/patología , Colestasis/metabolismo , Colestasis/patología , Plectina/metabolismo , Animales , Sistema Biliar/anomalías , Epitelio/metabolismo , Epitelio/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Queratinas/metabolismo , Hígado/anomalías , Hígado/metabolismo , Hígado/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Plectina/deficiencia , Plectina/genética , Estabilidad Proteica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
PLoS One ; 7(10): e46271, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056273

RESUMEN

Liver fibrosis is characterized by the deposition and increased turnover of extracellular matrix. This process is controlled by matrix metalloproteinases (MMPs), whose expression and activity dynamically change during injury progression. MMP-19, one of the most widely expressed MMPs, is highly expressed in liver; however, its contribution to liver pathology is unknown. The aim of this study was to elucidate the role of MMP-19 during the development and resolution of fibrosis by comparing the response of MMP-19-deficient (MMP19KO) and wild-type mice upon chronic liver CCl(4)-intoxication. We show that loss of MMP-19 was beneficial during liver injury, as plasma ALT and AST levels, deposition of fibrillar collagen, and phosphorylation of SMAD3, a TGF-ß1 signaling molecule, were all significantly lower in MMP19KO mice. The ameliorated course of the disease in MMP19KO mice likely results from a slower rate of basement membrane destruction and ECM remodeling as the knockout mice maintained significantly higher levels of type IV collagen and lower expression and activation of MMP-2 after 4 weeks of CCl(4)-intoxication. Hastened liver regeneration in MMP19KO mice was associated with slightly higher IGF-1 mRNA expression, slightly increased phosphorylation of Akt kinase, decreased TGF-ß1 mRNA levels and significantly reduced SMAD3 phosphorylation. In addition, primary hepatocytes isolated from MMP19KO mice showed impaired responsiveness towards TGF-ß1 stimulation, resulting in lower expression of Snail1 and vimentin mRNA. Thus, MMP-19-deficiency improves the development of hepatic fibrosis through the diminished replacement of physiological extracellular matrix with fibrotic deposits in the beginning of the injury, leading to subsequent changes in TGF-ß and IGF-1 signaling pathways.


Asunto(s)
Cirrosis Hepática/enzimología , Metaloproteinasas de la Matriz Secretadas/genética , Animales , Intoxicación por Tetracloruro de Carbono/enzimología , Proliferación Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hepatocitos/citología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cirrosis Hepática/inducido químicamente , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
9.
J Neurogenet ; 26(3-4): 413-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22950825

RESUMEN

Charcot-Marie-Tooth (CMT) neuropathy is the most common inherited neuromuscular disorder. CMT is genetically very heterogeneous. Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth neuropathy type 4C (CMT4C), a demyelinating form with autosomal recessive inheritance. In this study, two novel splice site mutations in the SH3TC2 gene have been studied (c.279G → A, c.3676-8G → A). Mutation c.279G → A was detected on one allele in two unrelated families with CMT4C in combination with a known pathogenic mutation (c.2860 C →T in one family, c.505T → C in the other) on the second allele of SH3TC2 gene. Variant c.3676-8G → A was detected in two patients from unrelated families on one allele of the SH3TC2 gene in combination with c.2860C →T mutation on the other allele. Several in silico tests were performed and exon trap experiments were undertaken in order to prove the effect of both mutations on proper splicing of SH3TC2. Fragments of SH3TC2 were subcloned into pET01 exon trap vector (Mobitec) and transfected into COS-7 cells. Aberrant splicing was predicted in silico for both mutations, which was confirmed by exon trap analysis. For c.279G → A mutation, 19 bases from intron 3 are retained in cDNA. The mutation c.3676-8G→ A produces a novel splice acceptor site for exon 17 and complex changes in splicing were observed. We present evidence that mutations c.279G → A and c.3676-8G →A in the SH3TC2 gene cause aberrant splicing and are therefore pathogenic and causal for CMT4C.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Simulación por Computador , Mutación/genética , Proteínas/genética , Adulto , Animales , Células COS , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Chlorocebus aethiops , Salud de la Familia , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Persona de Mediana Edad , Conducción Nerviosa/genética , Valores de Referencia , Transfección
10.
J Negat Results Biomed ; 9: 8, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20939886

RESUMEN

BACKGROUND: RNA interference (RNAi) is a powerful approach to study a gene function. Transgenic RNAi is an adaptation of this approach where suppression of a specific gene is achieved by expression of an RNA hairpin from a transgene. In somatic cells, where a long double-stranded RNA (dsRNA) longer than 30 base-pairs can induce a sequence-independent interferon response, short hairpin RNA (shRNA) expression is used to induce RNAi. In contrast, transgenic RNAi in the oocyte routinely employs a long RNA hairpin. Transgenic RNAi based on long hairpin RNA, although robust and successful, is restricted to a few cell types, where long double-stranded RNA does not induce sequence-independent responses. Transgenic RNAi in mouse oocytes based on a shRNA offers several potential advantages, including simple cloning of the transgenic vector and an ability to use the same targeting construct in any cell type. RESULTS: Here we report our experience with shRNA-based transgenic RNAi in mouse oocytes. Despite optimal starting conditions for this experiment, we experienced several setbacks, which outweigh potential benefits of the shRNA system. First, obtaining an efficient shRNA is potentially a time-consuming and expensive task. Second, we observed that our transgene, which was based on a common commercial vector, was readily silenced in transgenic animals. CONCLUSIONS: We conclude that, the long RNA hairpin-based RNAi is more reliable and cost-effective and we recommend it as a method-of-choice when a gene is studied selectively in the oocyte.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Oocitos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transgenes/genética , Animales , Clonación Molecular , Cruzamientos Genéticos , Femenino , Técnicas de Silenciamiento del Gen/economía , Vectores Genéticos/genética , Células HeLa , Humanos , Masculino , Ratones , Ratones Transgénicos , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-mos/genética , Proteínas Proto-Oncogénicas c-mos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...