Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Alzheimers Dement ; 20(5): 3290-3304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511601

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Secuenciación Completa del Genoma , Humanos , Enfermedad de Alzheimer/genética , Femenino , Masculino , Predisposición Genética a la Enfermedad/genética , Anciano , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética
2.
Nature ; 627(8003): 347-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374256

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Asunto(s)
Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Adipocitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Células Endoteliales/metabolismo , Células Enteroendocrinas , Epigenómica , Predisposición Genética a la Enfermedad/genética , Islotes Pancreáticos/metabolismo , Herencia Multifactorial/genética , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/genética , Análisis de la Célula Individual
3.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38014529

RESUMEN

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Grosor Intima-Media Carotídeo , Factores de Riesgo , Aterosclerosis/genética , Genómica
4.
Clin Epigenetics ; 15(1): 173, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891690

RESUMEN

BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Enfermedad de Alzheimer/genética , Diabetes Mellitus Tipo 2/genética , Metilación de ADN , Epigénesis Genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo/métodos , Resistencia a la Insulina/genética
5.
medRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693453

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.

6.
Nat Med ; 29(7): 1662-1670, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322115

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Precancerosas , Humanos , Hematopoyesis Clonal , Enfermedad de Alzheimer/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Mutación/genética
7.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034649

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

8.
Circ Genom Precis Med ; 16(1): e003858, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36598822

RESUMEN

BACKGROUND: Whether genetics contribute to the rising prevalence of obesity or its cardiovascular consequences in today's obesogenic environment remains unclear. We sought to determine whether the effects of a higher aggregate genetic burden of obesity risk on body mass index (BMI) or cardiovascular disease (CVD) differed by birth year. METHODS: We split the FHS (Framingham Heart Study) into 4 equally sized birth cohorts (birth year before 1932, 1932 to 1946, 1947 to 1959, and after 1960). We modeled a genetic predisposition to obesity using an additive genetic risk score (GRS) of 941 BMI-associated variants and tested for GRS-birth year interaction on log-BMI (outcome) when participants were around 50 years old (N=7693). We repeated the analysis using a GRS of 109 BMI-associated variants that increased CVD risk factors (type 2 diabetes, blood pressure, total cholesterol, and high-density lipoprotein) in addition to BMI. We then evaluated whether the effects of the BMI GRSs on CVD risk differed by birth cohort when participants were around 60 years old (N=5493). RESULTS: Compared with participants born before 1932 (mean age, 50.8 yrs [2.4]), those born after 1960 (mean age, 43.3 years [4.5]) had higher BMI (median, 25.4 [23.3-28.0] kg/m2 versus 26.9 [interquartile range, 23.7-30.6] kg/m2). The effect of the 941-variant BMI GRS on BMI and CVD risk was stronger in people who were born in later years (GRS-birth year interaction: P=0.0007 and P=0.04 respectively). CONCLUSIONS: The significant GRS-birth year interactions indicate that common genetic variants have larger effects on middle-age BMI and CVD risk in people born more recently. These findings suggest that the increasingly obesogenic environment may amplify the impact of genetics on the risk of obesity and possibly its cardiovascular consequences.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Persona de Mediana Edad , Humanos , Adulto , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Índice de Masa Corporal , Obesidad/epidemiología , Obesidad/genética , Factores de Riesgo
9.
BMC Genomics ; 23(1): 678, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182916

RESUMEN

BACKGROUND: Considering relatives' health history in logistic regression for case-control genome-wide association studies (CC-GWAS) may provide new information that increases accuracy and power to detect disease associated genetic variants. We conducted simulations and analyzed type 2 diabetes (T2D) data from the Framingham Heart Study (FHS) to compare two methods, liability threshold model conditional on both case-control status and family history (LT-FH) and Fam-meta, which incorporate family history into CC-GWAS. RESULTS: In our simulation scenario of trait with modest T2D heritability (h2 = 0.28), variant minor allele frequency ranging from 1% to 50%, and 1% of phenotype variance explained by the genetic variants, Fam-meta had the highest overall power, while both methods incorporating family history were more powerful than CC-GWAS. All three methods had controlled type I error rates, while LT-FH was the most conservative with a lower-than-expected error rate. In addition, we observed a substantial increase in power of the two familial history methods compared to CC-GWAS when the prevalence of the phenotype increased with age. Furthermore, we showed that, when only the phenotypes of more distant relatives were available, Fam-meta still remained more powerful than CC-GWAS, confirming that leveraging disease history of both close and distant relatives can increase power of association analyses. Using FHS data, we confirmed the well-known association of TCF7L2 region with T2D at the genome-wide threshold of P-value < 5 × 10-8, and both familial history methods increased the significance of the region compared to CC-GWAS. We identified two loci at 5q35 (ADAMTS2) and 5q23 (PRR16), not previously reported for T2D using CC-GWAS and Fam-meta; both genes play a role in cardiovascular diseases. Additionally, CC-GWAS detected one more significant locus at 13q31 (GPC6) reported associated with T2D-related traits. CONCLUSIONS: Overall, LT-FH and Fam-meta had higher power than CC-GWAS in simulations, especially using phenotypes that were more prevalent in older age groups, and both methods detected known genetic variants with lower P-values in real data application, highlighting the benefits of including family history in genetic association studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Commun Biol ; 5(1): 756, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902682

RESUMEN

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ayuno , Diabetes Mellitus Tipo 2/genética , Glucosa , Humanos , Insulina/genética , National Heart, Lung, and Blood Institute (U.S.) , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Receptores Inmunológicos/genética , Estados Unidos
11.
Nat Genet ; 54(5): 560-572, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551307

RESUMEN

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Etnicidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
12.
Commun Biol ; 5(1): 336, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396452

RESUMEN

Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Negro o Afroamericano/genética , Enfermedad de Alzheimer/genética , Exoma , Estudio de Asociación del Genoma Completo , Humanos
13.
Diabetes Care ; 45(3): 674-683, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085396

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) has heterogeneous patient clinical characteristics and outcomes. In previous work, we investigated the genetic basis of this heterogeneity by clustering 94 T2D genetic loci using their associations with 47 diabetes-related traits and identified five clusters, termed ß-cell, proinsulin, obesity, lipodystrophy, and liver/lipid. The relationship between these clusters and individual-level metabolic disease outcomes has not been assessed. RESEARCH DESIGN AND METHODS: Here we constructed individual-level partitioned polygenic scores (pPS) for these five clusters in 12 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (n = 454,193) and tested for cross-sectional association with T2D-related outcomes, including blood pressure, renal function, insulin use, age at T2D diagnosis, and coronary artery disease (CAD). RESULTS: Despite all clusters containing T2D risk-increasing alleles, they had differential associations with metabolic outcomes. Increased obesity and lipodystrophy cluster pPS, which had opposite directions of association with measures of adiposity, were both significantly associated with increased blood pressure and hypertension. The lipodystrophy and liver/lipid cluster pPS were each associated with CAD, with increasing and decreasing effects, respectively. An increased liver/lipid cluster pPS was also significantly associated with reduced renal function. The liver/lipid cluster includes known loci linked to liver lipid metabolism (e.g., GCKR, PNPLA3, and TM6SF2), and these findings suggest that cardiovascular disease risk and renal function may be impacted by these loci through their shared disease pathway. CONCLUSIONS: Our findings support that genetically driven pathways leading to T2D also predispose differentially to clinical outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Preparaciones Farmacéuticas , Alelos , Estudios Transversales , Diabetes Mellitus Tipo 2/genética , Sitios Genéticos , Humanos , Obesidad/genética , Preparaciones Farmacéuticas/metabolismo
14.
Stroke ; 53(3): 875-885, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34727735

RESUMEN

BACKGROUND AND PURPOSE: Stroke is the leading cause of death and long-term disability worldwide. Previous genome-wide association studies identified 51 loci associated with stroke (mostly ischemic) and its subtypes among predominantly European populations. Using whole-genome sequencing in ancestrally diverse populations from the Trans-Omics for Precision Medicine (TOPMed) Program, we aimed to identify novel variants, especially low-frequency or ancestry-specific variants, associated with all stroke, ischemic stroke and its subtypes (large artery, cardioembolic, and small vessel), and hemorrhagic stroke and its subtypes (intracerebral and subarachnoid). METHODS: Whole-genome sequencing data were available for 6833 stroke cases and 27 116 controls, including 22 315 European, 7877 Black, 2616 Hispanic/Latino, 850 Asian, 54 Native American, and 237 other ancestry participants. In TOPMed, we performed single variant association analysis examining 40 million common variants and aggregated association analysis focusing on rare variants. We also combined TOPMed European populations with over 28 000 additional European participants from the UK BioBank genome-wide array data through meta-analysis. RESULTS: In the single variant association analysis in TOPMed, we identified one novel locus 13q33 for large artery at whole-genome-wide significance (P<5.00×10-9) and 4 novel loci at genome-wide significance (P<5.00×10-8), all of which need confirmation in independent studies. Lead variants in all 5 loci are low-frequency but are more common in non-European populations. An aggregation of synonymous rare variants within the gene C6orf26 demonstrated suggestive evidence of association for hemorrhagic stroke (P<3.11×10-6). By meta-analyzing European ancestry samples in TOPMed and UK BioBank, we replicated several previously reported stroke loci including PITX2, HDAC9, ZFHX3, and LRCH1. CONCLUSIONS: We represent the first association analysis for stroke and its subtypes using whole-genome sequencing data from ancestrally diverse populations. While our findings suggest the potential benefits of combining whole-genome sequencing data with populations of diverse genetic backgrounds to identify possible low-frequency or ancestry-specific variants, they also highlight the need to increase genome coverage and sample sizes.


Asunto(s)
Sitios Genéticos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Grupos Raciales/genética , Accidente Cerebrovascular/genética , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Secuenciación Completa del Genoma
15.
Nat Hum Behav ; 6(1): 155-163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34426670

RESUMEN

Dietary intake is a major contributor to the global obesity epidemic and represents a complex behavioural phenotype that is partially affected by innate biological differences. Here, we present a multivariate genome-wide association analysis of overall variation in dietary intake to account for the correlation between dietary carbohydrate, fat and protein in 282,271 participants of European ancestry from the UK Biobank (n = 191,157) and Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 91,114), and identify 26 distinct genome-wide significant loci. Dietary intake signals map exclusively to specific brain regions and are enriched for genes expressed in specialized subtypes of GABAergic, dopaminergic and glutamatergic neurons. We identified two main clusters of genetic variants for overall variation in dietary intake that were differently associated with obesity and coronary artery disease. These results enhance the biological understanding of interindividual differences in dietary intake by highlighting neural mechanisms, supporting functional follow-up experiments and possibly providing new avenues for the prevention and treatment of prevalent complex metabolic diseases.


Asunto(s)
Dieta , Sitios Genéticos , Obesidad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Proteínas Nucleares/genética , Fenotipo , Polimorfismo de Nucleótido Simple
16.
PLoS One ; 16(7): e0253611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214102

RESUMEN

Handgrip strength is a widely used measure of muscle strength and a predictor of a range of morbidities including cardiovascular diseases and all-cause mortality. Previous genome-wide association studies of handgrip strength have focused on common variants primarily in persons of European descent. We aimed to identify rare and ancestry-specific genetic variants associated with handgrip strength by conducting whole-genome sequence association analyses using 13,552 participants from six studies representing diverse population groups from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple handgrip strength measures performed in study participants over time, we increased our effective sample size by 7-12%. Single-variant analyses identified ten handgrip strength loci among African-Americans: four rare variants, five low-frequency variants, and one common variant. One significant and four suggestive genes were identified associated with handgrip strength when aggregating rare and functional variants; all associations were ancestry-specific. We additionally leveraged the different ancestries available in the UK Biobank to further explore the ancestry-specific association signals from the single-variant association analyses. In conclusion, our study identified 11 new loci associated with handgrip strength with rare and/or ancestry-specific genetic variations, highlighting the added value of whole-genome sequencing in diverse samples. Several of the associations identified using single-variant or aggregate analyses lie in genes with a function relevant to the brain or muscle or were reported to be associated with muscle or age-related traits. Further studies in samples with sequence data and diverse ancestries are needed to confirm these findings.


Asunto(s)
Fuerza de la Mano/fisiología , Grupos Raciales/genética , Secuenciación Completa del Genoma/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Medicina de Precisión/estadística & datos numéricos , Grupos Raciales/estadística & datos numéricos
18.
Nat Commun ; 12(1): 654, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510174

RESUMEN

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Debilidad Muscular/genética , Sarcopenia/genética , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Estudios de Cohortes , Europa (Continente) , Femenino , Factor 5 de Diferenciación de Crecimiento/genética , Cadenas alfa de HLA-DQ/genética , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Debilidad Muscular/fisiopatología , Polimorfismo de Nucleótido Simple , Sarcopenia/fisiopatología
19.
Genet Epidemiol ; 45(3): 280-292, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33038041

RESUMEN

Multiple methods have been proposed to aggregate genetic variants in a gene or a region and jointly test their association with a trait of interest. However, these joint tests do not provide estimates of the individual effect of each variant. Moreover, few methods have evaluated the joint association of multiple variants with DNA methylation. We propose a method based on linear mixed models to estimate the joint and individual effect of multiple genetic variants on DNA methylation leveraging genomic annotations. Our approach is flexible, can incorporate covariates and annotation features, and takes into account relatedness and linkage disequilibrium (LD). Our method had correct Type-I error and overall high power for different simulated scenarios where we varied the number and specificity of functional annotations, number of causal and total genetic variants, frequency of genetic variants, LD, and genetic variant effect. Our method outperformed the family Sequence Kernel Association Test and had more stable estimations of effects than a classical single-variant linear mixed-effect model. Applied genome-wide to the Framingham Heart Study data, our method identified 921 DNA methylation sites influenced by at least one rare or low-frequency genetic variant located within 50 kilobases (kb) of the DNA methylation site.


Asunto(s)
Metilación de ADN , Modelos Genéticos , Humanos , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo
20.
Nat Commun ; 11(1): 6285, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293549

RESUMEN

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedades de los Pequeños Vasos Cerebrales/genética , Hipertensión/genética , Accidente Cerebrovascular/genética , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Imagen de Difusión Tensora , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/epidemiología , Masculino , Anamnesis , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...