Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
AMB Express ; 14(1): 51, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704453

RESUMEN

L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.

2.
Antibiotics (Basel) ; 12(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37627714

RESUMEN

Fever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA-48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M,aac(6')-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.

3.
Mol Biol Rep ; 50(6): 4945-4953, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081308

RESUMEN

BACKGROUND: The dissemination of carbapenem resistance via carbapenemases, such as the metallo-ß-lactamase NDM, among Enterobacterales poses a public health threat. The aim of this study was to characterize a plasmid carrying the blaNDM-1 gene, which was extracted from a clinical Klebsiella pneumoniae uropathogen from an Egyptian patient suffering from a urinary tract infection. METHODS AND RESULTS: The recovered plasmid was transformed into competent E. coli DH5α which acquired phenotypic resistance to cefoxitin, ceftazidime, and ampicillin/sulbactam, and intermediate sensitivity to ceftriaxone and imipenem (a carbapenem). Whole plasmid sequencing was performed on the extracted plasmid using the DNBSEQ™ platform. The obtained forward and reverse reads were assembled into contigs using the PRINSEQ and PLACNETw web tools. The obtained contigs were uploaded to PlasmidFinder and ResFinder for in silico plasmid typing and detection of antimicrobial resistance genes, respectively. The final consensus sequence was obtained using the Staden Package software. The plasmid (pNDMKP37, NCBI accession OK623716.1) was typed as an IncX3 plasmid with a size of 46,160 bp and harbored the antibiotic resistance genes blaNDM-1, bleMBL, and aph(3')-VI. The plasmid also carried mobile genetic elements involved in the dissemination of antimicrobial resistance including insertion sequences IS30, IS630, and IS26. CONCLUSIONS: This is Egypt's first report of a transmissible plasmid co-harboring blaNDM-1 and aph(3')-VI genes. Moreover, the respective plasmid is of great medical concern as it has caused the horizontal transmission of multidrug-resistant phenotypes to the transformant. Therefore, new guidelines should be implemented for the rational use of broad-spectrum antibiotics, particularly carbapenems.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli , Klebsiella pneumoniae , Antibacterianos/farmacología , Carbapenémicos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Fenotipo , Plásmidos/genética , Farmacorresistencia Bacteriana/genética
4.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902422

RESUMEN

Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic ß-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in ß-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa ß1 (NF-κß1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1ß (IL-1ß) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1ß, Il-18, Il-6, Asc, and Nf-κß1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve ß-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating ß-cells by multiple pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Células Secretoras de Insulina , Humanos , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Interleucina-6 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Ácido Palmítico , Proteínas Adaptadoras Transductoras de Señales/genética , Células Secretoras de Insulina/metabolismo
6.
Ther Deliv ; 14(1): 31-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950853

RESUMEN

Pseudomonas aeruginosa exotoxin A-based immunotoxins (PE-ITs) are fusion proteins that harness targeting and toxin moieties. Structural optimizations in PE and targeting moieties were implemented to lower their immunogenicity and alleviate undesirable side effects. PE moiety was engineered to lack its cell-binding domain and T cell epitope regions, whereas single chain (scFv) and disulfide Fv portions (dsFv), nanobodies, and monobodies were utilized as targeting moieties. This review discusses applications of PE-ITs on different types of cancer, structural optimizations to reduce PE-ITs drawbacks, and recent modifications applied for efficient therapeutic delivery. Finally, we draw attention to the possibility of combining radiotherapy, radionuclides, and RGDs with PE-IT to improve overall response rates of IT-based treatments and reduce cancer cell resistance.


Exotoxin A-immunotoxins are proteins that have been used in cancer treatments. The building components of these proteins are very poisonous to both cancer and normal cells. Also, unfavorable body reactions and side effects were seen with their usage. To allow the safe use of these proteins, changes were made in their building components. These changes made them damaging only to cancer cells while being safe to normal non-cancerous cells. This review will talk about the use of exotoxin A-Immunotoxins in different cancer treatments, and how they are created to limit the poisonous effect of their building components to only cancer cells.


Asunto(s)
Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Humanos , Inmunotoxinas/uso terapéutico , Inmunotoxinas/química , Exotoxinas/uso terapéutico , Exotoxinas/química , Neoplasias/tratamiento farmacológico , Pseudomonas aeruginosa , Exotoxina A de Pseudomonas aeruginosa
7.
Antibiotics (Basel) ; 12(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36830188

RESUMEN

Staphylococcus aureus (S. aureus) is a worldwide leading versatile pathogen that causes a wide range of serious infections. The emergence of antimicrobial resistance against S. aureus resulted in an urgent need to develop new antimicrobials in the new era. The methicillin-resistant S. aureus (MRSA) prevalence in hospital and community settings necessitates the discovery of novel anti-pathogenic agents. Staphyloxanthin (STX) is a key virulence factor for the survival of MRSA against host innate immunity. The current work aimed to demonstrate the anti-virulence properties of meloxicam (MXM) as compared to diclofenac (DC), which was previously reported to mitigate the virulence of multidrug-resistant Staphylococcus aureus and test their activities in STX production. A total of 80 S. aureus clinical isolates were included, wherein a qualitative and quantitative assessment of STX inhibition by diclofenac and meloxicam was performed. The quantitative gene expression of STX biosynthetic genes (crtM, crtN and sigB) and hla (coded for α-hemolysin) as a virulence gene with and without DC and MXM was conducted, followed by molecular docking analysis for further confirmation. DC and MXM potently inhibited the synthesis of STX at 47 and 59 µg/mL to reach 79.3-98% and 80.6-96.7% inhibition, respectively. Treated cells also revealed a significant downregulation of virulence genes responsible for STX synthesis, such as crtM, crtN and global transcriptional regulator sigB along with the hla gene. Furthermore, computational studies unveiled strong interactions between the CrtM binding site and DC/MXM. In conclusion, this study highlights the potential role and repurposing of DC and MXM as adjuvants to conventional antimicrobials and as an anti-virulent to combat MRSA infections.

8.
Metabolites ; 13(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837926

RESUMEN

Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) gene has been recognized as a susceptibility gene for diabetes. However, its action in the physiology of pancreatic ß-cells is not fully understood. Herein, bioinformatics and genetic analyses on the publicly available database were performed to map the expression of the MAPK8IP1 gene in human pancreatic islets and to explore whether this gene contains any genetic variants associated with type 2 diabetes (T2D). Moreover, a series of functional experiments were executed in a rat insulinoma cell line (INS-1 832/13) to investigate the role of the Mapk8ip1 gene in ß-cell function. Metabolic engineering using RNA-sequencing (RNA-seq) data confirmed higher expression levels of MAPK8IP1 in human islets compared to other metabolic tissues. Additionally, comparable expression of MAPK8IP1 expression was detected in sorted human endocrine cells. However, ß-cells exhibited higher expression of MAPK8IP1 than ductal and PSC cells. Notably, MAPK8IP1 expression was reduced in diabetic islets, and the expression was positively correlated with insulin and the ß-cell transcription factor PDX1 and MAFA. Using the TIGER portal, we found that one genetic variant, "rs7115753," in the proximity of MAPK8IP1, passes the genome-wide significance for the association with T2D. Expression silencing of Mapk8ip1 by small interfering RNA (siRNA) in INS-1 cells reduced insulin secretion, glucose uptake rate, and reactive oxygen species (ROS) production. In contrast, insulin content, cell viability, and apoptosis without cytokines were unaffected. However, silencing of Mapk8ip1 reduced cytokines-induced apoptosis and downregulated the expression of several pancreatic ß-cell functional markers including, Ins1, Ins2, Pdx1, MafA, Glut2, Gck, Insr, Vamp2, Syt5, and Cacna1a at mRNA and/or protein levels. Finally, we reported that siRNA silencing of Pdx1 resulted in the downregulation of MAPK8IP1 expression in INS-1 cells. In conclusion, our findings confirmed that MAPK8IP1 is an important component of pancreatic ß-cell physiology and insulin secretion.

9.
Appl Microbiol Biotechnol ; 107(5-6): 1765-1784, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808279

RESUMEN

The ADP-ribosyl transferase activity of P. aeruginosa PE24 moiety expressed by E. coli BL21 (DE3) was assessed on nitrobenzylidene aminoguanidine (NBAG) and in vitro cultured cancer cell lines. Gene encoding PE24 was isolated from P. aeruginosa isolates, cloned into pET22b( +) plasmid, and expressed in E. coli BL21 (DE3) under IPTG induction. Genetic recombination was confirmed by colony PCR, the appearance of insert post digestion of engineered construct, and protein electrophoresis using sodium dodecyl-sulfate polyacrylamide gel (SDS-PAGE). The chemical compound NBAG has been used to confirm PE24 extract ADP-ribosyl transferase action through UV spectroscopy, FTIR, c13-NMR, and HPLC before and after low-dose gamma irradiation (5, 10, 15, 24 Gy). The cytotoxicity of PE24 extract alone and in combination with paclitaxel and low-dose gamma radiation (both 5 Gy and one shot 24 Gy) was assessed on adherent cell lines HEPG2, MCF-7, A375, OEC, and Kasumi-1 cell suspension. Expressed PE24 moiety ADP-ribosylated NBAG as revealed by structural changes depicted by FTIR and NMR, and the surge of new peaks at different retention times from NBAG in HPLC chromatograms. Irradiating recombinant PE24 moiety was associated with a reduction in ADP-ribosylating activity. The PE24 extract IC50 values were < 10 µg/ml with an acceptable R2 value on cancer cell lines and acceptable cell viability at 10 µg/ml on normal OEC. Overall, the synergistic effects were observed upon combining PE24 extract with low-dose paclitaxel demonstrated by the reduction in IC50 whereas antagonistic effects and a rise in IC50 values were recorded after irradiation by low-dose gamma rays. KEY POINTS: • Recombinant PE24 moiety was successfully expressed and biochemically analyzed. • Low-dose gamma radiation and metal ions decreased the recombinant PE24 cytotoxic activity. • Synergism was observed upon combining recombinant PE24 with low-dose paclitaxel.


Asunto(s)
ADP Ribosa Transferasas , Pseudomonas aeruginosa , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Pseudomonas aeruginosa/genética , Rayos gamma , Escherichia coli/genética
10.
Biology (Basel) ; 11(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290316

RESUMEN

The most prevalent cause of infectious neonatal diarrhea is Group A rotavirus (RVA). Unfortunately, there is a dearth of data on the incidence of rotavirus-associated infections among Egyptian children. The present study aimed to isolate, propagate, and genotype human rotaviruses circulating among Egyptian children with acute gastroenteritis admitted to two main university pediatric hospitals, Abo El-Reesh and El-Demerdash, over two consecutive winters, 2018-2020. Diarrheal samples (n = 230) were screened for Group A rotavirus RNA using RT-PCR assay. In positive samples (n = 34), multiplex semi-nested PCR was utilized to determine G and P genotypes. Thirty-four (14.8%) of the collected samples tested positive. The genotype distribution revealed that G1P[8] was the predominant rotavirus genotype throughout the current study. All rotavirus-positive fecal samples were passaged twice on human colorectal adenocarcinoma cell line (Caco-2) and rhesus monkey kidney epithelial cell line (MA104). Both cell lines could successfully isolate 14.7% (n = 5 out of 34) of the identified strains; however, Caco-2 cell line was shown to be more efficient than MA104 in promoting the propagation of human rotaviruses identified in Egyptian children's feces.

11.
Germs ; 12(1): 75-85, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35601951

RESUMEN

Introduction: Contemporary emergence of multidrug resistance (MDR) urges regular updates on circulating pathogens and their antimicrobial resistance profiles. We aimed to identify the burden of MDR and World Health Organization (WHO) priority Gram negative pathogens among patients admitted with febrile illness to Abbassia Fever Hospital, a major Public Fever Hospital in Egypt. The carbapenemase- and extended spectrum beta-lactamases (ESBLs)-encoding genes carried by the isolates were also identified. Methods: A total of 9602 clinical specimens were collected from febrile patients during 2018 and 2019. The recovered bacterial isolates were examined for antimicrobial susceptibility using disk diffusion test. Susceptibility to colistin was tested using E-test. ESBLs production was phenotypically and genotypically analyzed. Results: A total of 790 bacterial isolates (612 Gram negative and 178 Gram positive) were recovered. A percentage of 77.6%, and 62.9% of the Gram negative and positive isolates showed MDR phenotype, respectively. WHO priority pathogens were abundant, including carbapenem-resistant (CR) Enterobacterales (105/187; 56.1%) and CR glucose non-fermenters (82/187; 43.8%) such as: A. baumannii (55; 29.4%), P. aeruginosa (27; 14.4%). Carbapenemase- and ESBLs-encoding genes were detected in 56.1% and 30.8% of Enterobacterales and in 43.8% and 46.3% of glucose non-fermenters, respectively. Antimicrobials such as fosfomycin and chloramphenicol retained good activities against MDR Gram negative pathogens. Conclusions: This study highlights the regional burden of MDR and priority Gram negative pathogens. The obtained data are of relevant medical importance for implementation of evidence-based antimicrobial stewardship programs and for tailoring the existing empirical treatment guidelines.

12.
Antibiotics (Basel) ; 11(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35326762

RESUMEN

Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.

13.
Crit Rev Microbiol ; 48(1): 42-66, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34265231

RESUMEN

Various studies confirmed that bacterial infections contribute to carcinogenesis through the excessive accumulation of reactive oxygen species (ROS) and the expression of toxins that disrupt the cell cycle phases, cellular regulatory mechanisms and stimulate the production of tumorigenic inflammatory mediators. These toxins mimic carcinogens which act upon key cellular targets and result in mutations and genotoxicities. The cyclomodulins are bacterial toxins that incur cell cycle modulating effects rendering the expressing bacterial species of high carcinogenic potentiality. They are either cellular proliferating or cell cycle arrest cyclomodulins. Notably, cyclomodulins expressing bacterial species have been linked to different human carcinomas. For instance, Escherichia coli species producing the colibactin were highly prevalent among colorectal carcinoma patients, CagA+ Helicobacter pylori species were associated with MALT lymphomas and gastric carcinomas and Salmonella species producing CdtB were linked to hepatobiliary carcinomas. These species stimulated the overgrowth of pre-existing carcinomas and induced hyperplasia in in vivo animal models suggesting a role for the cyclomodulins in carcinogenesis. Wherefore, the prevalence and mode of action of these toxins were the focus of many researchers and studies. This review discusses different types of bacterial cyclomodulins highlighting their mode of action and possible role in carcinogenesis.


Asunto(s)
Infecciones Bacterianas , Toxinas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Antígenos Bacterianos , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Carcinogénesis , Infecciones por Helicobacter/complicaciones , Humanos
14.
AMB Express ; 11(1): 173, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936047

RESUMEN

This work explores the ADP-ribosyltransferase activity of Pseudomonas (P.) aeruginosa exotoxin A using the guanyl hydrazone derivative, nitrobenzylidine aminoguanidine (NBAG) and the impact of gamma radiation on its efficacy. Unlike the conventional detection methods, NBAG was used as the acceptor of ADP ribose moiety instead of wheat germ extract elongation factor 2. Exotoxin A was extracted from P. aeruginosa clinical isolates and screened for toxA gene using standard PCR. NBAG was synthesized using aminoguanidine bicarbonate and 4-nitrobenzaldehyde and its identity has been confirmed by UV, FTIR, Mass and 13C-NMR spectroscopy. The ADP-ribosyl transferase activity of exotoxin A on NBAG in the presence of Nicotinamide adenine dinucleotide (NAD+) was recorded using UV spectroscopy and HPLC. In vitro ADP-ribosyl transferase activity of exotoxin A protein extract was also explored by monitoring its cytotoxicity on Hep-2 cells using sulforhodamine B cytotoxicity assay. Bacterial broths were irradiated at 5, 10, 15, 24 Gy and exotoxin A protein extract activity were assessed post exposure. Exotoxin A extract exerted an ADP-ribosyltransferase ability which was depicted by the appearance of a new ʎmax after the addition of exotoxin A to NBAG/NAD+ mixture, fragmentation of NAD+ and development of new peaks in HPLC chromatograms. Intracellular enzyme activity was confirmed by the prominent cytotoxic effects of exotoxin A extract on cultured cells. In conclusion, the activity of Exotoxin A can be monitored via its ADP-ribosyltransferase activity and low doses of gamma radiation reduced its activity. Therefore, coupling radiotherapy with exotoxin A in cancer therapy should be carefully monitored.

15.
Biology (Basel) ; 10(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34571766

RESUMEN

Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).

16.
Infect Drug Resist ; 14: 3327-3339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447258

RESUMEN

BACKGROUND: Successful treatment of Acinetobacter (A.) baumannii-associated infection is complicated by the emergence of multidrug resistance (MDR), particularly in clinical settings. This urges searching for new alternatives to encounter such health problem. AIM: This study aimed to evaluate certain antibiotic combinations and CNPs either alone or in combination of some selected antibiotics for the purpose of combating MDR A. baumannii clinical isolates. METHODS: A total of 51 A. baumannii clinical isolates were recovered from discharged clinical specimens of the Clinical Microbiology Central Laboratory of AL Kasr Al Aini hospital, Cairo, Egypt. Conventional standard Lab tests were used for identification followed by recA gene testing for confirmation. Antimicrobial susceptibility tests were conducted out according to CLSI guidelines. Genotypic analysis using Enterobacterial Repetitive Intergenic Consensus-polymerase chain reaction (ERIC-PCR) of the respective isolates showed that they were clustered in nine clones. The prepared CNPs were characterized by dynamic light scattering and HR-transmission electron microscope imaging. Antibiotic combinations and co-effect of CNPs with some selected antibiotics (either each alone or in combination of two) were evaluated using the Checkerboard microdilution and minimum inhibitor concentration decrease factor (MDF) methods, respectively. RESULTS: The recovered 51 A. baumannii clinical isolates were MDR (100%) of these 92% (47/51) were extensively drug resistance (XDR). Combinations of colistin (CT)+meropenem (MEM) and MEM+tigecycline (TGC) showed synergism in 77.7% and 44.4% and additive effects in 22.3% and 55.6% of the tested MDR A. baumannii isolates (n=51), respectively. However, CT+TGC combination showed antagonism. CNPs exhibited good inhibitory activity (inhibition zones ranged from 24 to 31 mm) against selected nine MDR A. baumannii isolates (one isolate from each clone). The MIC of CNPs at concentrations (ranging from 1 to 5 mg/mL) were from 0.16 to 0.25 mg/mL, indicating good in vitro antimicrobial activities. CNPs (5 mg/mL) when combined with CT, TGC or MEM, CT+MEM and TGC+MEM significantly increased the susceptibilities of the MDR A. baumannii isolates to these antibiotics by 88.8%, 66.6%, 100%, 77.7%, and 44.4%, respectively. No significant effects were observed when CNPs (5 mg/mL) were combined with CT+TGC. CONCLUSION: The current study demonstrated the significant in-vitro activities of CNPs either alone or in combination with CT, TGC or MEM, CT+MEM and TGC+MEM and the successful combinations of MEM either with CT or with TGC against the MDR A. baumannii pathogens. However, further in vivo studies should be conducted to verify such activities and their potential use in human.

17.
Biomedicines ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946612

RESUMEN

The interleukin (IL)-6 family of cytokines and exaggerated signal transducer and activator of transcription (STAT)3 signaling is implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis, but the mechanisms regulating STAT3 expression and function are unknown. Suppressor of cytokine signaling (SOCS)1 and SOCS3 block STAT3, and low SOCS1 levels have been reported in IPF fibroblasts and shown to facilitate collagen production. Fibroblasts and lung tissue from IPF patients and controls were used to examine the mechanisms underlying SOCS1 down-regulation in IPF. A significant reduction in basal SOCS1 mRNA in IPF fibroblasts was confirmed. However, there was no difference in the kinetics of activation, and methylation of SOCS1 in control and IPF lung fibroblasts was low and unaffected by 5'-aza-2'-deoxycytidine' treatment. SOCS1 is a target of microRNA-155 and although microRNA-155 levels were increased in IPF tissue, they were reduced in IPF fibroblasts. Therefore, SOCS1 is not regulated by SOCS1 gene methylation or microRNA155 in these cells. In conclusion, we confirmed that IPF fibroblasts had lower levels of SOCS1 mRNA compared with control fibroblasts, but we were unable to determine the mechanism. Furthermore, although SOCS1 may be important in the fibrotic process, we were unable to find a significant role for SOCS1 in regulating fibroblast function.

18.
Clin Infect Dis ; 73(10): 1860-1870, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33693626

RESUMEN

BACKGROUND: Our goal was to identify genetic risk factors for severe otitis media (OM) in Aboriginal Australians. METHODS: Illumina® Omni2.5 BeadChip and imputed data were compared between 21 children with severe OM (multiple episodes chronic suppurative OM and/or perforations or tympanic sclerosis) and 370 individuals without this phenotype, followed by FUnctional Mapping and Annotation (FUMA). Exome data filtered for common (EXaC_all ≥ 0.1) putative deleterious variants influencing protein coding (CADD-scaled scores ≥15] were used to compare 15 severe OM cases with 9 mild cases (single episode of acute OM recorded over ≥3 consecutive years). Rare (ExAC_all ≤ 0.01) such variants were filtered for those present only in severe OM. Enrichr was used to determine enrichment of genes contributing to pathways/processes relevant to OM. RESULTS: FUMA analysis identified 2 plausible genetic risk loci for severe OM: NR3C1 (Pimputed_1000G = 3.62 × 10-6) encoding the glucocorticoid receptor, and NREP (Pimputed_1000G = 3.67 × 10-6) encoding neuronal regeneration-related protein. Exome analysis showed: (i) association of severe OM with variants influencing protein coding (CADD-scaled ≥ 15) in a gene-set (GRXCR1, CDH23, LRP2, FAT4, ARSA, EYA4) enriched for Mammalian Phenotype Level 4 abnormal hair cell stereociliary bundle morphology and related phenotypes; (ii) rare variants influencing protein coding only seen in severe OM provided gene-sets enriched for "abnormal ear" (LMNA, CDH23, LRP2, MYO7A, FGFR1), integrin interactions, transforming growth factor signaling, and cell projection phenotypes including hair cell stereociliary bundles and cilium assembly. CONCLUSIONS: This study highlights interacting genes and pathways related to cilium structure and function that may contribute to extreme susceptibility to OM in Aboriginal Australian children.


Asunto(s)
Otitis Media , Australia/epidemiología , Humanos , Otitis Media/genética , Fenotipo , Grupos Raciales , Transactivadores
19.
Curr Microbiol ; 78(2): 544-557, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33388934

RESUMEN

Colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are cyclomodulins secreted by uropathogenic E. coli. In this study, uropathogenic E. coli expressing colibactin and Cnf 1 was exposed to antibiotics subMICs and gamma radiation to investigate their effects on its cytotoxicity and expression of colibactin. The test isolate was exposed to three subMIC levels of levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole and ceftriaxone and irradiated with gamma rays at 10 and 24.4 Gy. The cytotoxicity for either antibiotic or gamma rays treated cultures was measured using MTT assay and the expression of colibactin encoding genes was determined by RT-PCR. Treatment with fluoroquinolones nearly abolished the cytotoxicity of E. coli isolate and significantly downregulated clbA gene expression at the tested subMICs (P ≤ 0.05) while trimethoprim/sulfamethoxazole treated cultures exerted significant downregulation of clbA and clbQ genes at 0.5 MIC only (P ≤ 0.05). Ceftriaxone treated cultured exhibited reduction in the cytotoxicity and insignificant effects on expression of clbA, clbQ and clbM genes. On contrast, significant upregulation in the expression of clbA and clbQ genes was observed in irradiated cultures (P ≤ 0.05). Fluoroquinolones reduced both the cytotoxicity of UPEC isolate and colibactin expression at different subMICs while ceftriaxone at subMICs failed to suppress the expression of genotoxin, colibactin, giving an insight to the risks associated upon their choice for UTI treatment. Colibactin expression was enhanced by gamma irradiation at doses resembling these received during pelvic radiotherapy which might contribute to post-radiotherapy complications.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Policétidos , Escherichia coli Uropatógena , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Rayos gamma , Humanos , Proteínas de Transporte de Catión Orgánico , Péptidos , Escherichia coli Uropatógena/genética
20.
NPJ Genom Med ; 5(1): 54, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303739

RESUMEN

Exome sequencing has enabled molecular diagnoses for rare disease patients but often with initial diagnostic rates of ~25-30%. Here we develop a robust computational pipeline to rank variants for reassessment of unsolved rare disease patients. A comprehensive web-based patient report is generated in which all deleterious variants can be filtered by gene, variant characteristics, OMIM disease and Phenolyzer scores, and all are annotated with an ACMG classification and links to ClinVar. The pipeline ranked 21/34 previously diagnosed variants as top, with 26 in total ranked ≤7th, 3 ranked ≥13th; 5 failed the pipeline filters. Pathogenic/likely pathogenic variants by ACMG criteria were identified for 22/145 unsolved cases, and a previously undefined candidate disease variant for 27/145. This open access pipeline supports the partnership between clinical and research laboratories to improve the diagnosis of unsolved exomes. It provides a flexible framework for iterative developments to further improve diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA