Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 608(Pt 1): 893-902, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785464

RESUMEN

Responsive wormlike micelles (WLMs) consisted of cationic surfactants and organic-acids are fascinating due to their reversible molecular recognition properties. However, it is unknown how the structure of organic-acids alters the stimuli-responsiveness of WLMs systems. Herein, the peculiar nature of temperature-responsive behaviors in three WLMs systems were systematically investigated. These were manufactured by combining N-erucamidopropyl-N,N-dimethylamine (UC22AMPM) with isomers of organic-acids: o-phthalic acid (o-PA), m-phthalic acid (m-PA) and p-phthalic acid (p-PA) at molar ratio of 2:1 (named as o-EAPA, m-EAPA and p-EAPA respectively). The phase behaviors, macro- and micro-rheology, as well as the mechanism of temperature-responsiveness were explored by visual inspection, rheological and optical methods. The results showed that the three systems exhibited different responsiveness with increase of temperature. Among them, the viscosity and viscoelasticity of o-EAPA were gradually decreased with temperature increase from 30 °C to 90 °C. On the other hand, those of p-EAPA were firstly increased and subsequently decreased, exhibiting the highest viscosity during the heating process. This peculiar phenomenon was attributed to the hydrophilic difference of organic-acids isomers, leading to variations of micelle transitions upon temperature increase. This study is the first report of aromatic-acids isomers inducing different on temperature-responsiveness, and finding beneficial for the development of responsive WLMs for different applications.


Asunto(s)
Micelas , Tensoactivos , Reología , Temperatura , Viscosidad
2.
Adv Colloid Interface Sci ; 299: 102527, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34607652

RESUMEN

Microemulsion, because of its excellent interfacial tension reduction and solubilization properties, has wide range of applications in the petroleum industry, especially in improved oil recovery (IOR). Herein, the concept, types and formation mechanism of microemulsion were primarily introduced. Then, the preparation and characterization methods were illustrated. Additionally, several effect factors were elaborated specifically based on the composition of microemulsion. Finally, the application of microemulsion in IOR was addressed, including IOR mechanism analysis based on sweep efficiency and displacement efficiency, injection method (microemulsion flooding, in-situ microemulsion formation) and field tests. Furthermore, the current challenges and prospects of microemulsion on IOR were analyzed.

3.
Macromol Rapid Commun ; 42(11): e2100033, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33904224

RESUMEN

In order to prepare materials with controllable properties, changeable microstructure, and high viscoelasticity solution with low polymer and surfactant concentration, a composite is constituted by adding surfactant (sodium dodecyl sulfate, SDS) to hydrophobically associated water-soluble polymer (abbreviated as PAAC) solution. The viscoelasticity, aggregate microstructure, and interaction mechanism of the composite are investigated by rheometery, Cryo-transmission electron microscopy (Cryo-TEM), and fluorescence spectrum. The results show that when the mass ratio of polymer to surfactant is 15:1, the viscosity of the composite reaches the maximum. The viscosity of the composite system increases hundredfold. The viscosity plateau under dynamic shear is generated. The composite has the properties of high viscoelasticity, strong shear thinning behavior, and good salt tolerance, and temperature resistance. The maximum viscosity of the composite is shown at the salinity of 20000 mg L-1 . In addition, there is no phase separation in the composite with the increase of polymer and surfactant concentration, which indicates the good stability of the system. It is proposed a method to obtain a high viscoelasticity solution by adding surfactants without wormlike micelles to a hydrophobically associated water-soluble polymer solution.


Asunto(s)
Polímeros , Tensoactivos , Micelas , Viscosidad , Agua
4.
Adv Colloid Interface Sci ; 289: 102363, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33545442

RESUMEN

For the past decades, long-term water flooding processes have led to water channeling in mature reservoirs, which is a severe problem in oilfields. The development of better plugging ability and cost-effective polymer gel is a key aspect for the control of excess water production. Research on polymer gel applicable in a heterogeneous reservoir to plug high permeable channels has been growing significantly as revealed by numerous published scientific papers. This review intends to discuss the polymer gel techniques from innovations to applications. The related difficulties and future prospects of polymer gels are also covered. Developments of polymer gels to resist temperature, early gel formation, synergistic mechanisms and influence of pH, high salinity are systematically emphasized. The review provides a basis to develop polymer gels for future applications in oilfields to meet harsh reservoir conditions. It will assist the researchers to further develop polymer gels to improve the oil recovery from mature reservoirs under economic conditions to meet the requirements of future oilfields.

5.
Adv Colloid Interface Sci ; 282: 102214, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32721622

RESUMEN

In recent years, with the further development of old oilfields, in order to further improve the oil recovery, they must be conformance controlled. Among various types of conformance control methods, polymer gels composed of polymers and crosslinkers have attracted widespread attention because of their efficiency and low costs. Among them, organic chromium gels with their good formation adaptability and high stability have been fully developed in recent decades. This review introduces the different types of polymers and crosslinkers used in the preparation of organic chromium gels, and the mechanisms of affecting their performance are analyzed. On this basis, the organic chromium gels for different formation conditions are introduced, including nanoparticle-reinforced and compound organic chromium gels. At the same time, evaluation methods of organic chromium gels are introduced, while the focus is on the in-situ measurement method (mirco-rheology) of gel formation time developed in recent decades. Based on the currently developed organic chromium gel and the analysis of the development status in oilfields, future directions like the use of supramolecular organic chromium gel and shear organic chromium gel are suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA