Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811815

RESUMEN

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Asunto(s)
Axones , Factor Estimulante de Colonias de Granulocitos , Interleucina-4 , Ratones Endogámicos C57BL , Regeneración Nerviosa , Neutrófilos , Animales , Neutrófilos/inmunología , Regeneración Nerviosa/inmunología , Ratones , Humanos , Axones/metabolismo , Axones/fisiología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Interleucina-4/metabolismo , Activación Neutrófila , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traslado Adoptivo , Citocinas/metabolismo , Células Cultivadas
2.
Nat Neurosci ; 27(4): 656-665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378993

RESUMEN

Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.


Asunto(s)
Astrocitos , Enfermedades Neurodegenerativas , Ratones , Animales , Astrocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Envejecimiento/metabolismo , Sistema Nervioso Central
3.
J Trauma Acute Care Surg ; 96(4): 557-565, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962211

RESUMEN

BACKGROUND: Pneumonia remains a common complication in trauma patients. Sirtuin 1 (SIRT1) is an anti-inflammatory NAD + -dependent deacetylase that has been shown to reduce the severity of ARDS in polymicrobial sepsis. The impact of SIRT1 in acute pneumonia, however, remains unknown. We hypothesized that SIRT1 deletion in pneumonia would worsen the inflammatory response and clinical severity, and that increased SIRT1 expression would be protective. METHODS: Ten- to 14-week-old male and female SIRT1 knockout (S1KO) mice, SIRT1 overexpressor (S1OE) mice, and their wildtype (WT) littermates underwent intra-tracheal inoculation with Pseudomonas aeruginosa . Rectal temperature was recorded, SIRT1 lung protein was quantified by western blotting, Sirt1 mRNA was measured by qPCR, and lung leukocyte subpopulations were analyzed by flow cytometry. Data were analyzed by one-way ANOVA using Prism software. RESULTS: Pneumonia created a functional SIRT1 knockdown in the lungs of WT mice by 4 hours, resulting in comparable SIRT1 levels and temperatures to the S1KO mice by 12 hours. Pneumonia also partially reduced SIRT1expression in S1OE mice, but S1OE mice still had improved thermoregulation 12 hours after pneumonia. In all groups, Sirt1 mRNA expression was not affected by infection. Sirtuin 1 deletion was associated with decreased neutrophil infiltration in the lung, as well as a shift toward a more immature neutrophil phenotype. SIRT1 deletion was also associated with decreased myeloperoxidase-positive neutrophils in the lungs following pneumonia, indicating decreased neutrophil activity. S1OE mice had no change in lung leukocyte subpopulations when compared to WT. CONCLUSION: Pneumonia creates a functional SIRT1 knockdown in mice. SIRT1 deletion altered the early inflammatory cell response to pneumonia, resulting in a neutrophil response that would be less favorable for bacterial clearance. Despite overexpression of SIRT1, S1OE mice also developed low SIRT1 levels and exhibited only minimal improvement. This suggests increasing SIRT1 transcription is not sufficient to overcome pneumonia-induced downregulation and has implications for future treatment options. Targeting SIRT1 through increasing protein stability may promote a more efficient inflammatory cell response to pneumonia, thereby preventing subsequent lung injury.


Asunto(s)
Neutrófilos , Neumonía , Humanos , Masculino , Ratones , Femenino , Animales , Neutrófilos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Regulación hacia Abajo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Res Sq ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961609

RESUMEN

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration, and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke, and other neurological disorders. Here we demonstrate that both mouse and human bone marrow (BM) neutrophils, when polarized with a combination of recombinant interleukin (IL)-4 and granulocyte-colony stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF polarized BM neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.

5.
J Neuroimmunol ; 375: 578016, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36708633

RESUMEN

Experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of Th17 cells, typically presents with ascending paralysis and inflammatory demyelination of the spinal cord. Brain white matter is relatively spared. Here we show that treatment of Th17 transfer recipients with a highly selective inhibitor to the TAM family of tyrosine kinase receptors results in ataxia associated with a shift of the inflammatory infiltrate to the hindbrain parenchyma. During homeostasis and preclinical EAE, hindbrain microglia express high levels of the TAM receptor Mer. Our data suggest that constitutive TAM receptor signaling in hindbrain microglia confers region-specific protection against Th17 mediated EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Ratones , Médula Espinal/patología , Microglía/patología , Proteínas Tirosina Quinasas Receptoras , Ratones Endogámicos C57BL
6.
Front Endocrinol (Lausanne) ; 13: 864925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795142

RESUMEN

Peripheral nerves allow a bidirectional communication between brain and adipose tissues, and many studies have clearly demonstrated that a loss of the adipose nerve supply results in tissue dysfunction and metabolic dysregulation. Neuroimmune cells closely associate with nerves in many tissues, including subcutaneous white adipose tissue (scWAT). However, in scWAT, their functions beyond degrading norepinephrine in an obese state remain largely unexplored. We previously reported that a myeloid-lineage knockout (KO) of brain-derived neurotrophic factor (BDNF) resulted in decreased innervation of scWAT, accompanied by an inability to brown scWAT after cold stimulation, and increased adiposity after a high-fat diet. These data underscored that adipose tissue neuroimmune cells support the peripheral nerve supply to adipose and impact the tissue's metabolic functions. We also reported that a subset of myeloid-lineage monocyte/macrophages (Ly6c+CCR2+Cx3cr1+) is recruited to scWAT in response to cold, a process known to increase neurite density in adipose and promote metabolically healthy processes. These cold-induced neuroimmune cells (CINCs) also expressed BDNF. Here we performed RNAseq on CINCs from cold-exposed and room temperature-housed mice, which revealed a striking and coordinated differential expression of numerous genes involved in neuronal function, including neurotrophin signaling and axonal guidance, further supporting that CINCs fulfill a nerve-supporting role in adipose. The increased expression of leukocyte transendothelial migration genes in cold-stimulated CINCs also confirms prior evidence that they are recruited to scWAT and are not tissue resident. We now provide whole-depot imaging of scWAT from LysM-BDNF KO mice, revealing a striking reduction of innervation across the depot fitting with their reduced energy expenditure phenotype. By contrast, Cx3cr1-BDNF KO mice (a macrophage subset of LysM+ cells) exhibited increased thermogenesis and energy expenditure, with compensatory increased food intake and no change in adiposity or body weight. While these KO mice also exhibit a significantly reduced innervation of scWAT, especially around the subiliac lymph node, they displayed an increase in small fiber sympathetic neurite branching, which may underlie their increased thermogenesis. We propose a homeostatic role of scWAT myeloid-lineage neuroimmune cells together in nerve maintenance and neuro-adipose regulation of energy expenditure.


Asunto(s)
Tejido Adiposo Blanco , Factor Neurotrófico Derivado del Encéfalo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Ratones Noqueados , Plasticidad Neuronal , Obesidad/metabolismo , Termogénesis/genética
7.
Front Immunol ; 13: 912193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711408

RESUMEN

Recent studies using advanced techniques such as single cell RNA sequencing (scRNAseq), high parameter flow cytometry, and proteomics reveal that neutrophils are more heterogeneous than previously appreciated. Unique subsets have been identified in the context of bacterial and parasitic infections, cancer, and tissue injury and repair. The characteristics of infiltrating neutrophils differ depending on the nature of the inflammation-inciting stimulus, the stage of the inflammatory response, as well as the tissue microenvironment in which they accumulate. We previously described a new subpopulation of immature Ly6Glow neutrophils that accumulate in the peritoneal cavity 3 days following intraperitoneal (i.p.) administration of the fungal cell wall extract, zymosan. These neutrophils express markers of alternative activation and possess neuroprotective/regenerative properties. In addition to inducing neurite outgrowth of explanted neurons, they enhance neuronal survival and axon regeneration in vivo following traumatic injury to the optic nerve or spinal cord. In contrast, the majority of neutrophils that accumulate in the peritoneal fluid 4 hours following i.p. zymosan injection (4h NΦ) have features of conventional, mature Ly6Ghi neutrophils and lack neuroprotective or neuroregenerative properties. In the current study, we expand upon on our previously published observations by performing a granular, in-depth analysis of these i.p. zymosan-modulated neutrophil populations using scRNAseq and high parameter flow cytometry. We also analyze cell lysates of each neutrophil population by liquid chromatography/mass spectrometry. Circulating blood neutrophils, harvested from naive mice, are analyzed in parallel as a control. When samples were pooled from all three groups, scRNAseq revealed 11 distinct neutrophil clusters. Pathway analyses demonstrated that 3d NΦ upregulate genes involved in tissue development and wound healing, while 4h NΦ upregulate genes involved in cytokine production and perpetuation of the immune response. Proteomics analysis revealed that 3d NΦ and 4h NΦ also express distinct protein signatures. Adding to our earlier findings, 3d NΦ expressed a number of neuroprotective/neuroregenerative candidate proteins that may contribute to their biological functions. Collectively, the data generated by the current study add to the growing literature on neutrophil heterogeneity and functional sub-specialization and might provide new insights in elucidating the mechanisms of action of pro-regenerative, neuroprotective neutrophil subsets.


Asunto(s)
Axones , Neutrófilos , Animales , Inflamación/metabolismo , Ratones , Regeneración Nerviosa , Zimosan/farmacología
8.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35511417

RESUMEN

Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing-remitting MS typically presents in the third or fourth decade, whereas the mean age of presentation of progressive MS (PMS) is 45 years old. Here, we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, was more severe, and less likely to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils were more abundant, while B cells were relatively sparse, in CNS infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrated that radio-resistant, nonhematopoietic cells played a dominant role in shaping age-dependent features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of PMS, EAE in middle-aged adoptive transfer recipients was characterized by widespread microglial activation. Microglia from older mice expressed a distinctive transcriptomic profile suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Traslado Adoptivo , Envejecimiento , Animales , Linfocitos T CD4-Positivos , Ratones
9.
Nat Immunol ; 21(12): 1496-1505, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106668

RESUMEN

Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.


Asunto(s)
Axones/metabolismo , Comunicación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Regeneración Nerviosa , Neuronas/metabolismo , Neutrófilos/metabolismo , Animales , Biomarcadores , Plasticidad de la Célula/inmunología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Sistema Nervioso Central/inmunología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Ratones , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Nervio Óptico/inmunología , Nervio Óptico/metabolismo , Receptores de Interleucina-8B/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Transcriptoma , Zimosan/metabolismo , Zimosan/farmacología
10.
J Neurosci ; 29(12): 3948-55, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321791

RESUMEN

Interferon-alpha (IFNalpha) is a pleomorphic cytokine produced by nucleated cells in response to viral infection. In patients, treatment with IFNalpha has side effects including cognitive impairment resembling subcortical dementia, which is a hallmark of human immunodeficiency virus (HIV)-associated dementia (HAD). IFNalpha is increased in the CSF of HAD patients compared with HIV patients without dementia. In this study, blocking IFNalpha in a HIV encephalitis (HIVE) mouse model with intraperitoneal injections of IFNalpha neutralizing antibodies (NAbs) significantly improved cognitive function compared with untreated or control antibody-treated HIVE mice during water radial arm maze behavioral testing. Treatment with IFNalpha NAbs significantly decreased microgliosis and prevented loss of dendritic arborization in the brains of HIVE mice. Furthermore, treatment of primary neuron cultures with IFNalpha resulted in dose-dependent loss of dendritic arborization that was blocked with IFNalpha NAb treatment and partially blocked with NMDA antagonists [AP5 and MK801 (dizocilpine maleate)] indicating glutamate signaling is involved in IFNalpha-mediated neuronal damage. These results show that IFNalpha has a major role in the pathogenesis of HIVE in mice and is likely important in the development neurocognitive dysfunction in humans with HIV. Blocking IFNalpha could be important in improving cognitive and pathological developments in HAD patients and may be clinically important in other neuroinflammatory diseases as well.


Asunto(s)
Complejo SIDA Demencia/patología , Encefalitis Viral/patología , VIH-1 , Interferón-alfa/fisiología , Neuronas/efectos de los fármacos , Complejo SIDA Demencia/psicología , Complejo SIDA Demencia/virología , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/patología , Encefalitis Viral/psicología , Encefalitis Viral/virología , Humanos , Interferón-alfa/antagonistas & inhibidores , Interferón-alfa/inmunología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones SCID , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
11.
J Neurosci ; 28(40): 10010-6, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829958

RESUMEN

Human immunodeficiency virus (HIV)-associated dementia (HAD) is common among clade B HIV-infected individuals, but less common and less severe among individuals infected with clade C HIV-1, suggesting clade-specific differences in neuropathogenicity. Although differences in neuropathogenicity have been investigated in vitro using viral proteins responsible for HAD, to date there are no virological studies using animal models to address this issue. Therefore, we investigated neuropathogenesis induced by HIV-1 clades using the severe combined immune deficiency (SCID) mouse HIV encephalitis model, which involves intracranial injection of macrophages infected with representative clade B (HIV-1(ADA)) or clade C (HIV-1(Indie-C1)) HIV-1 isolates into SCID mice. In cognitive tests, mice exposed to similar inputs of HIV-1 clade C made fewer memory errors than those exposed to HIV-1 clade B. Histopathological analysis of mice exposed to clade B exhibited greater astrogliosis and increased loss of neuronal network integrity. In vitro experiments revealed differences in a key characteristic of HIV-1 that influences HAD, increased monocyte infiltration. HIV-1(Indie-C1)-infected macrophages recruited monocytes poorly in vitro compared with HIV-1(ADA)-infected macrophages. Monocyte recruitment was HIV-1 Tat and CCL2 dependent. This is the first demonstration, ever since HIV neuropathogenesis was first recognized, that viral genetic differences between clades can affect disease severity and that such studies help identify key players in neuropathogenesis by HIV-1.


Asunto(s)
Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/fisiología , Complejo SIDA Demencia/etiología , Complejo SIDA Demencia/patología , Complejo SIDA Demencia/virología , Animales , Células Cultivadas , Productos del Gen tat/fisiología , Infecciones por VIH/etiología , VIH-1/aislamiento & purificación , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID
12.
AIDS ; 21(16): 2151-9, 2007 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-18090041

RESUMEN

BACKGROUND: Interferon alpha (IFNalpha) is an antiviral cytokine produced in response to viral infection. IFNalpha also acts as a neuromodulatory molecule in the central nervous system (CNS). Elevated IFNalpha in the CNS causes cognitive deficits. OBJECTIVE: To determine if elevated levels of IFNalpha in an HIV encephalitis mouse model correlate with cognitive deficits. METHODS: C57BL/6J SCID mice were inoculated intracerebrally (i.c.) with HIV infected or uninfected (control) macrophages and cognitively tested in a water escape radial arm maze. After behavioral testing was completed, immunohistochemistry and ELISA were used to examine brain pathology and IFNalpha expression. RESULTS: Mice injected i.c. with HIV infected macrophages exhibited significantly more working memory errors, particularly in trials with the highest memory load. Immunohistochemistry indicated increased mouse IFNalpha staining prevalent on neurons and glial cells in the brains of mice with HIV infected macrophages compared to mice with uninfected control macrophages. In addition, IFNalpha levels in the brain correlated directly with working memory errors for mice with HIV infected macrophages. CONCLUSIONS: These data suggest that the cognitive deficit noted for the C57BL/6J SCID mice with HIV infected macrophages is mediated by the infection induced increase in IFNalpha.


Asunto(s)
Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/psicología , Encéfalo/inmunología , VIH-1 , Interferón-alfa/análisis , Trastornos de la Memoria/virología , Animales , Química Encefálica , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunohistoquímica , Macrófagos/virología , Masculino , Trastornos de la Memoria/inmunología , Ratones , Ratones SCID , Modelos Animales , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...