Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 82(1): 235-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38064100

RESUMEN

Oxidative stress (OS) plays a key role in the development of cardiovascular diseases (CVD) in three major ways: reactive oxygen species (ROS)-induced reduction of nitric oxide (NO) bioavailability, ROS-induced inflammation and ROS-induced mitochondrial dysfunction. Oxidation of lipid molecules under the action of ROS leads to damage to membrane structures, changes the functioning of membrane-bound enzymes, and impairs membrane permeability and stability. An increase in OS results in the occurrence of endothelial dysfunction and drug tolerance, side effects, requiring discontinuation of drugs. All of these are significant problems of cardiotherapy. Therefore, the search for new alternative NO donors continues. The present research was aimed at studying the protective effect of 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate (NS) on the cardiovascular system on mouse myocardial ischemia (MI) model. The NS hybrid molecule includes a synthetic vitamin B6 analog 2-ethyl-3-hydroxy-6-methylpyridine (an antioxidant) and 2-nitroxysuccinic acid (a source of nitric oxide). Using the electron paramagnetic resonance (EPR) method and biochemical methods, we showed that the pronounced ability of NS to release NO is favorably combines with the capacity to prevent OS due to mechanisms such as suppression of the lipid peroxidation (LPO) process, antiradical activity and inhibition of the mitochondrial membrane-bound monoamine oxidase A (MAO-A). Using histological methods, we established that the administration of NS (10 mg/kg, i.p.) reduces the number of ischemic fibers and protects cardiomyocytes against ischemia injury. Thus, the complex protective effect allows us to consider NS as an alternative NO donor and a candidate for the development of a new pharmaceutical agent for the treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Isquemia Miocárdica , Ratones , Animales , Especies Reactivas de Oxígeno , Hidrocortisona/farmacología , Epinefrina/farmacología , Óxido Nítrico , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/tratamiento farmacológico , Estrés Oxidativo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología
2.
Curr Cancer Drug Targets ; 18(4): 365-371, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28669342

RESUMEN

BACKGROUND: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. OBJECTIVE: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. METHOD: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. RESULTS: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. CONCLUSION: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Inhibidores de Histona Desacetilasas/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Leucemia Linfoide/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Células HeLa , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patología , Masculino , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA