Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(2): 113704, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38265938

RESUMEN

Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , ARN Bicatenario , Humanos , Enfermedad Crónica , Edición de ARN , Linfocitos T
2.
Res Sq ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398458

RESUMEN

Leukemia initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches to eliminate LICs and prevent relapse. Here, we show that the RNA editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine (A-to-I) editing is a common attribute of relapsed T-ALL regardless of molecular subtypes. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL PDX models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA and retains unedited nuclear dsRNA to avoid detection by the innate immune sensor MDA5. Moreover, we uncovered that the cell intrinsic level of MDA5 dictates the dependency on ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents a safe and effective therapeutic strategy for eliminating T-ALL LICs.

3.
N Engl J Med ; 388(24): 2241-2252, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37256972

RESUMEN

BACKGROUND: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high. METHODS: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM. Genomic sequencing independently identified three heterozygous variants in a specific region of the gene that encodes signal transducer and activator of transcription 4 (STAT4). Primary skin fibroblast and cell-line assays were used to define the functional nature of the genetic defect. We also assayed gene expression using single-cell RNA sequencing of peripheral-blood mononuclear cells to identify inflammatory pathways that may be affected in DPM and that may respond to therapy. RESULTS: Genome sequencing revealed three novel heterozygous missense gain-of-function variants in STAT4. In vitro, primary skin fibroblasts showed enhanced interleukin-6 secretion, with impaired wound healing, contraction of the collagen matrix, and matrix secretion. Inhibition of Janus kinase (JAK)-STAT signaling with ruxolitinib led to improvement in the hyperinflammatory fibroblast phenotype in vitro and resolution of inflammatory markers and clinical symptoms in treated patients, without adverse effects. Single-cell RNA sequencing revealed expression patterns consistent with an immunodysregulatory phenotype that were appropriately modified through JAK inhibition. CONCLUSIONS: Gain-of-function variants in STAT4 caused DPM in the families that we studied. The JAK inhibitor ruxolitinib attenuated the dermatologic and inflammatory phenotype in vitro and in the affected family members. (Funded by the American Academy of Allergy, Asthma, and Immunology Foundation and others.).


Asunto(s)
Enfermedades Autoinmunes , Fármacos Dermatológicos , Quinasas Janus , Esclerodermia Sistémica , Quinasas Janus/antagonistas & inhibidores , Nitrilos , Pirazoles/uso terapéutico , Pirazoles/farmacología , Pirimidinas , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/genética , Mutación Missense , Mutación con Ganancia de Función , Fármacos Dermatológicos/uso terapéutico , Antiinflamatorios/uso terapéutico
4.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359808

RESUMEN

Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Cromatina/metabolismo , Retina/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética
5.
Sci Rep ; 12(1): 15273, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088481

RESUMEN

Mutations in the Membrane-type frizzled related protein (Mfrp) gene results in an early-onset retinal degeneration associated with retinitis pigmentosa, microphthalmia, optic disc drusen and foveal schisis. In the current study, a previously characterized mouse model of human retinal degeneration carrying homozygous c.498_499insC mutations in Mfrp (MfrpKI/KI) was used. Patients carrying this mutation have retinal degeneration at an early age. The model demonstrates subretinal deposits and develops early-onset photoreceptor degeneration. We observed large subretinal deposits in MfrpKI/KI mice which were strongly CD68 positive and co-localized with autofluorescent spots. Single cell RNA sequencing of MfrpKI/KI mice retinal microglia showed a significantly higher number of pan-macrophage marker Iba-1 and F4/80 positive cells with increased expression of activation marker (CD68) and lowered microglial homeostatic markers (TMEM119, P2ry13, P2ry13, Siglech) compared with wild type mice confirming microglial activation as observed in retinal immunostaining showing microglia activation in subretinal region. Trajectory analysis identified a small cluster of microglial cells with activation transcriptomic signatures that could represent a subretinal microglia population in MfrpKI/KI mice expressing higher levels of APOE. We validated these findings using immunofluorescence staining of retinal cryosections and found a significantly higher number of subretinal Iba-1/ApoE positive microglia in MfrpKI/KI mice with some subretinal microglia also expressing lowered levels of microglial homeostatic marker TMEM119, confirming microglial origin. In summary, we confirm that MfrpKI/KI mice carrying the c.498_499insC mutation had a significantly higher population of activated microglia in their retina with distinct subsets of subretinal microglia. Further, studies are required to confirm whether the association of increased subretinal microglia in MfrpKI/KI mice are causal in degeneration.


Asunto(s)
Degeneración Retiniana , Animales , Apolipoproteínas E/genética , Fóvea Central/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Análisis de Secuencia de ARN
6.
Nat Commun ; 13(1): 5092, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042358

RESUMEN

Energy metabolism becomes dysregulated in individuals with obesity and many of these changes persist after weight loss and likely play a role in weight regain. In these studies, we use a mouse model of diet-induced obesity and weight loss to study the transcriptional memory of obesity. We found that the 'metabolic memory' of obesity is predominantly localized in adipocytes. Utilizing a C. elegans-based food intake assay, we identify 'metabolic memory' genes that play a role in food intake regulation. We show that expression of ATP6v0a1, a subunit of V-ATPase, is significantly induced in both obese mouse and human adipocytes that persists after weight loss. C. elegans mutants deficient in Atp6v0A1/unc32 eat less than WT controls. Adipocyte-specific Atp6v0a1 knockout mice have reduced food intake and gain less weight in response to HFD. Pharmacological disruption of V-ATPase assembly leads to decreased food intake and less weight re-gain. In summary, using a series of genetic tools from invertebrates to vertebrates, we identify ATP6v0a1 as a regulator of peripheral metabolic memory, providing a potential target for regulation of food intake, weight loss maintenance and the treatment of obesity.


Asunto(s)
Dieta Alta en Grasa , Obesidad , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adipocitos/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Aumento de Peso , Pérdida de Peso
7.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L84-L92, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699291

RESUMEN

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/diagnóstico , COVID-19/genética , Enfermedad Crítica , ADN Mitocondrial/genética , Humanos , Unidades de Cuidados Intensivos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/genética
8.
Genes Dev ; 35(15-16): 1093-1108, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34266887

RESUMEN

Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Animales , Transformación Celular Neoplásica/genética , Centrosoma , Inestabilidad Cromosómica/genética , Evolución Clonal , Inestabilidad Genómica/genética , Ratones
9.
Cell Rep ; 34(4): 108670, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503434

RESUMEN

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression. In pre-LSCs, inflammatory splice isoform overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA hyper-editing. Pre-LSC evolution to LSCs is marked by STAT3 editing, STAT3ß isoform switching, elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice isoform switching. Thus, pre-LSC evolution to LSCs is fueled by primate-specific APOBEC3C-induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.


Asunto(s)
Inflamación/inmunología , Leucemia Mieloide Aguda/fisiopatología , Proliferación Celular , Humanos , Células Madre Neoplásicas/metabolismo
10.
PLoS One ; 15(5): e0233380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437477

RESUMEN

Alternative mRNA splicing increases protein diversity, and alternative splicing events (ASEs) drive oncogenesis in multiple tumor types. However, the driving alterations that underlie the broad dysregulation of ASEs are incompletely defined. Using head and neck squamous cell carcinoma (HNSCC) as a model, we hypothesized that the genomic alteration of genes associated with the spliceosome may broadly induce ASEs across a broad range of target genes, driving an oncogenic phenotype. We identified 319 spliceosome genes and employed a discovery pipeline to identify 13 candidate spliceosome genes altered in HNSCC using The Cancer Genome Atlas (TCGA) HNSCC data. Phenotypic screens identified amplified and overexpressed CPSF1 as a target gene alteration that was validated in proliferation, colony formation, and apoptosis assays in cell line and xenograft systems as well as in primary HNSCC. We employed knockdown and overexpression assays followed by identification of ASEs regulated by CPSF1 overexpression to identify changes in ASEs, and the expression of these ASEs was validated using RNA from cell line models. Alterations in expression of spliceosome genes, including CPSF1, may contribute to HNSCC by mediating aberrant ASE expression.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Empalme Alternativo , Biomarcadores de Tumor , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
11.
J Cachexia Sarcopenia Muscle ; 11(2): 464-477, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898871

RESUMEN

BACKGROUND: Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS: Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS: At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS: These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Animales , Homeostasis , Humanos , Ratones , Análisis de Supervivencia
12.
Nat Cancer ; 1(4): 410-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-34109316

RESUMEN

Aggressive myeloid leukemias such as blast crisis chronic myeloid leukemia and acute myeloid leukemia remain highly lethal. Here we report a genome-wide in vivo CRISPR screen to identify new dependencies in this disease. Among these, RNA-binding proteins (RBPs) in general, and the double-stranded RBP Staufen2 (Stau2) in particular, emerged as critical regulators of myeloid leukemia. In a newly developed knockout mouse, loss of Stau2 led to a profound decrease in leukemia growth and improved survival in mouse models of the disease. Further, Stau2 was required for growth of primary human blast crisis chronic myeloid leukemia and acute myeloid leukemia. Finally, integrated analysis of CRISPR, eCLIP and RNA-sequencing identified Stau2 as a regulator of chromatin-binding factors, driving global alterations in histone methylation. Collectively, these data show that in vivo CRISPR screening is an effective tool for defining new regulators of myeloid leukemia progression and identify the double-stranded RBP Stau2 as a critical dependency of myeloid malignancies.


Asunto(s)
Crisis Blástica , Leucemia Mieloide Aguda , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma , Leucemia Mieloide Aguda/genética , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética
13.
Cell Rep ; 28(4): 1103-1116.e4, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340147

RESUMEN

Asymptomatic and symptomatic Alzheimer's disease (AD) subjects may present with equivalent neuropathological burdens but have significantly different antemortem cognitive decline rates. Using the transcriptome as a proxy for functional state, we selected 414 expression profiles of symptomatic AD subjects and age-matched non-demented controls from a community-based neuropathological study. By combining brain tissue-specific protein interactomes with gene networks, we identified functionally distinct composite clusters of genes that reveal extensive changes in expression levels in AD. Global expression for clusters broadly corresponding to synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, while the upregulated cluster included largely uncharacterized processes. We propose that loss of EGR3 regulation mediates synaptic deficits by targeting the synaptic vesicle cycle. Our results highlight the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing alterations in the molecular network as applied to AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Demencia/patología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteoma/análisis , Transcriptoma , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores/análisis , Encéfalo/metabolismo , Estudios de Casos y Controles , Demencia/genética , Demencia/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino
14.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955884

RESUMEN

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Asunto(s)
Adenocarcinoma/patología , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Epigénesis Genética , Biblioteca de Genes , Humanos , Ratones , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-10/antagonistas & inhibidores , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcriptoma , Células Tumorales Cultivadas
15.
Proc Natl Acad Sci U S A ; 115(39): E9192-E9200, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30209212

RESUMEN

Intestinal epithelial cell (IEC) death is a common feature of inflammatory bowel disease (IBD) that triggers inflammation by compromising barrier integrity. In many patients with IBD, epithelial damage and inflammation are TNF-dependent. Elevated TNF production in IBD is accompanied by increased expression of the TNFAIP3 gene, which encodes A20, a negative feedback regulator of NF-κB. A20 in intestinal epithelium from patients with IBD coincided with the presence of cleaved caspase-3, and A20 transgenic (Tg) mice, in which A20 is expressed from an IEC-specific promoter, were highly susceptible to TNF-induced IEC death, intestinal damage, and shock. A20-expressing intestinal organoids were also susceptible to TNF-induced death, demonstrating that enhanced TNF-induced apoptosis was a cell-autonomous property of A20. This effect was dependent on Receptor Interacting Protein Kinase 1 (RIPK1) activity, and A20 was found to associate with the Ripoptosome complex, potentiating its ability to activate caspase-8. A20-potentiated RIPK1-dependent apoptosis did not require the A20 deubiquitinase (DUB) domain and zinc finger 4 (ZnF4), which mediate NF-κB inhibition in fibroblasts, but was strictly dependent on ZnF7 and A20 dimerization. We suggest that A20 dimers bind linear ubiquitin to stabilize the Ripoptosome and potentiate its apoptosis-inducing activity.


Asunto(s)
Apoptosis , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Multimerización de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/genética
16.
Cell Mol Gastroenterol Hepatol ; 6(2): 181-198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30003124

RESUMEN

BACKGROUND & AIMS: Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS: RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated ß-galactosidase activity assays identified cellular senescence. RESULTS: E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated ß-galactosidase activity and altered expression of senescence markers. CONCLUSIONS: E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.

17.
Mol Cell ; 69(4): 699-708.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452643

RESUMEN

The metabolic pathways fueling tumor growth have been well characterized, but the specific impact of transforming events on network topology and enzyme essentiality remains poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway (PPP). This high-throughput methodology enabled systems-level interrogation of metabolic gene dispensability, interactions, and compensation across multiple cell types. The metabolic impact of specific combinatorial knockouts was validated using 13C and 2H isotope tracing, and these assays together revealed key nodes controlling redox homeostasis along the KEAP-NRF2 signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP genes mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate how our integrated framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation of metabolic network alterations and guide precision targeting of metabolic vulnerabilities based on tumor genetics.


Asunto(s)
Sistemas CRISPR-Cas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Redes y Vías Metabólicas , Factor 2 Relacionado con NF-E2/metabolismo , Transcriptoma , Glucólisis , Células HeLa , Homeostasis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Vía de Pentosa Fosfato , Transducción de Señal
18.
Physiol Genomics ; 50(3): 144-157, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29341863

RESUMEN

Highly inbred C57BL/6 mice show wide variation in their degree of insulin resistance in response to diet-induced obesity even though they are almost genetically identical. Here we employed transcriptional profiling by RNA sequencing (RNA-Seq) of visceral adipose tissue (VAT) and liver in young mice to determine how gene expression patterns correlate with the later development of high-fat diet (HFD)-induced insulin resistance in adulthood. To accomplish this goal, we partially removed and banked tissues from pubertal mice. Mice subsequently received HFD followed by metabolic phenotyping to identify two well-defined groups of mice with either severe or mild insulin resistance. The remaining tissues were collected at study termination. We then applied RNA-Seq to generate transcriptome profiles associated with worsened insulin resistance before and after the initiation of HFD. We found 244 up- and 109 downregulated genes in VAT of the most insulin-resistant mice even before HFD exposure. Downregulated genes included serine protease inhibitor, major urinary protein, and complement genes; upregulated genes represented mostly muscle constituents. These gene families were also differentially expressed in VAT of mice with high or low insulin resistance after HFD. Inflammatory genes predicted insulin resistance in liver, but not in VAT. In contrast, when we compared VAT of all mice before and after HFD, differentially expressed genes were predominantly composed of immune response genes. These data show a distinct set of gene transcripts in young mice correlates with the severity of insulin resistance in adulthood, providing insight into the pathogenesis of insulin resistance in early life.


Asunto(s)
Envejecimiento/genética , Resistencia a la Insulina/genética , Obesidad/genética , Transcriptoma , Adiposidad/genética , Animales , Peso Corporal/genética , Dieta Alta en Grasa , Regulación de la Expresión Génica , Inmunidad/genética , Inflamación/genética , Inflamación/patología , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Grasa Subcutánea/metabolismo
19.
Biol Blood Marrow Transplant ; 23(11): 1852-1860, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28750779

RESUMEN

Defective post-transplantation thymopoiesis is associated with chronic graft-versus-host disease (GVHD), a multiorgan pathology affecting up to 80% of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Previous work demonstrated that the subset of T cells expressing 2 T cell receptors (TCRs) is predisposed to alloreactivity, driving selective and disproportionate activity in acute GVHD in both mouse models and HSCT patients. Here we investigate a potential role for this pathogenic T cell subset in chronic GVHD (cGVHD). HSCT patients with cGVHD demonstrated increased numbers of dual TCR cells in circulation. These dual receptor cells had an activated phenotype, indicating an active role in cGVHD. Notably, single-cell RNA sequencing identified the increased dual TCR cells in cGVHD as predominantly expressing Tbet, indicative of a proinflammatory phenotype. These results identify dual TCR cells as specific mediators of pathogenic inflammation underlying cGVHD and highlight Tbet-driven T cell function as a potential pathway for potential therapeutic targeting.


Asunto(s)
Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Acondicionamiento Pretrasplante/métodos , Adulto , Anciano , Enfermedad Crónica , Humanos , Persona de Mediana Edad , Adulto Joven
20.
Nat Methods ; 14(6): 573-576, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28319113

RESUMEN

We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies.


Asunto(s)
Mapeo Cromosómico/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas Químicas Combinatorias , Epistasis Genética/genética , Proteínas de Neoplasias/genética , Células A549 , Línea Celular Tumoral , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...