Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 24(11): 4939-4957, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37819211

RESUMEN

This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with ß-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films.


Asunto(s)
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Poliésteres/química , Suelo
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430556

RESUMEN

In this experimental research, different types of essential oils (EOs) were blended with polyhydroxybutyrate (PHB) to study the influence of these additives on PHB degradation. The blends were developed by incorporating three terpenoids at two concentrations (1 and 3%). The mineralization rate obtained from CO2 released from each sample was the factor that defined biodegradation. Furthermore, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used in this research. The biodegradation percentages of PHB blended with 3% of eucalyptol, limonene, and thymol after 226 days were reached 66.4%, 73.3%, and 76.9%, respectively, while the rate for pure PHB was 100% after 198 days, and SEM images proved these results. Mechanical analysis of the samples showed that eucalyptol had the highest resistance level, even before the burial test. The other additives showed excellent mechanical properties although they had less mechanical strength than pure PHB after extrusion. The samples' mechanical properties improved due to their crystallinity and decreased glass transition temperature (Tg). DSC results showed that blending terpenoids caused a reduction in Tg, which is evident in the DMA results, and a negligible reduction in melting point (Tm).


Asunto(s)
Antiinfecciosos , Butiratos , Poliésteres/química , Terpenos , Eucaliptol , Antibacterianos
3.
Int J Biol Macromol ; 213: 110-122, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35644317

RESUMEN

This study investigates novel ternary polymer blends based on polyvinylpyrrolidone (PVP) as the matrix in combination with lignosulfonate and synthetic zeolite. The blends were prepared by the casting method, and their properties were analysed by various techniques, i.e. FTIR analysis, differential scanning calorimetry and thermogravimetric analysis, including tests for water solubility and uptake, and determination of adhesion and hardness. The biodegradation of the blends in soil was also evaluated, and an experiment was conducted on plant growth (Sinapis alba). Optical microscopy showed that particles of the synthetic zeolite were relatively evenly distributed in the polymer matrix, forming random networks therein. The FTIR spectra for the blends proved that hydrogen bonding interactions had occurred between the PVP/synthetic zeolite and PVP/lignosulfonate. DSC analysis confirmed the good miscibility of the PVP and lignosulfonate. TGA results indicated that the thermal stability of the PVP was maintained. Lignosulfonate had the effect of reducing the adhesion of the blends. However, it was revealed that effect depends greatly on the presence of zeolite and the concentration of lignosulfonate. The obtained results showed that the optimal composition of the blend is 2.5 wt% of zeolite and 5 wt% of lignosulfonate into the PVP. Its water solubility and uptake was satisfactory from the perspective of handling and further utilization. A respirometric biodegradation test confirmed that the ternary blend was environmentally friendly, in addition to which a germination experiment evidenced that the lignosulfonate and synthetic zeolite promoted the root growth and development of S. alba. From these findings it was concluded that the novel ternary polymer blend was applicable as either as seed carriers (in the form of seed tapes) or as a biocompatible coating to protect seeds.


Asunto(s)
Povidona , Zeolitas , Rastreo Diferencial de Calorimetría , Química Agrícola , Lignina/análogos & derivados , Polímeros/química , Povidona/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA