Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1253652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885452

RESUMEN

Biosurfactants are microbial products that have applications as cleaning agents, emulsifiers, and dispersants. Detection and quantification of biosurfactants can be done by various methods, including colorimetric tests, high performance liquid chromatography (HPLC) coupled to several types of detectors, and tests that take advantage of biosurfactants reducing surface tension of aqueous liquids, allowing for spreading and droplet formation of oils. We present a new and simple method for quantifying biosurfactants by their ability, on paper, to reduce surface tension of aqueous solutions, causing droplet dispersion on an oiled surface in correlation with biosurfactant content. We validated this method with rhamnolipids, surfactin, sophorolipids, and ananatoside B; all are anionic microbial surfactants. Linear ranges for quantification in aqueous solutions for all tested biosurfactants were between 10 and 500 µM. Our method showed time-dependent biosurfactant accumulation in cultures of Pseudomonas aeruginosa strains PA14 and PAO1, and Burkholderia thailandensis E264. Mutants in genes responsible for surfactant production showed negligible activity on oiled paper. In summary, our simple assay provides the opportunity to quantify biosurfactant contents of aqueous solutions, for a diversity of surfactants, by means readily available in any laboratory.

2.
Mycopathologia ; 188(6): 949-956, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713047

RESUMEN

In a previous study, therapeutic activity of nikkomycin Z (NZ) in a model of invasive candidiasis did not appear to correlate with lesser activity in vitro (using classical MIC methods) with planktonic organisms. However, NZ potency was much greater assaying activity in vitro against germ tubes, the initiator of the invasive mycelial form of the fungus, as occurs in infected tissues. Synergy has been demonstrated for NZ and other drugs, notably fluconazole (the most commonly used drug against candidiasis), in planktonic testing, which correlated with results in vivo. This raised the question whether activity shown by NZ alone against germ tubes would be reflected in drug combinations, and even whether synergy testing against germ tubes might be a better correlate of synergy in future in vivo studies. We show in this study significant NZ synergy with fluconazole against germ tubes, for several C. albicans isolates, with testing in many drug ratios. This observation opens the way for further explorations of this method of susceptibility testing for synergy, and correlation with combination therapy against candidiasis.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Fluconazol/farmacología , Fluconazol/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Sinergismo Farmacológico , Candidiasis/microbiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
3.
Front Cell Infect Microbiol ; 13: 1196581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680748

RESUMEN

Lung infection with the fungus Aspergillus fumigatus (Af) is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function. We established a fungal epithelial co-culture model to examine the impact of Af infection on CF bronchial epithelial barrier function using Af strains 10AF and AF293-GFP, and the CFBE41o- cell line homozygous for the F508del mutation with (CF+CFTR) and without (CF) normal CFTR expression. Following exposure of the epithelial surface to Af conidia, formation of germlings (early stages of fungal growth) was detected after 9-12 hours and hyphae (mature fungal growth) after 12-24 hours. During fungal morphogenesis, bronchial epithelial cells showed signs of damage including rounding, and partial detachment after 24 hours. Fluorescently labeled conidia were internalized after 6 hours and more internalized conidia were observed in CF compared to CF+CFTR cells. Infection of the apical surface with 10AF conidia, germlings, or hyphae was performed to determine growth stage-specific effects on tight junction protein zona occludens protein 1 (ZO-1) expression and transepithelial electrical resistance (TER). In response to infection with conidia or germlings, epithelial barrier function degraded time-dependently (based on ZO-1 immunofluorescence and TER) with a delayed onset in CF+CFTR cell monolayers and required viable fungi and apical application. Infection with hyphae caused an earlier onset and faster rate of decline in TER compared to conidia and germlings. Gliotoxin, a major Af virulence factor, caused a rapid decline in TER and induced a transient chloride secretory response in CF+CFTR but not CF cells. Our findings suggest growth and internalization of Af result in deleterious effects on bronchial epithelial barrier function that occurred more rapidly in the absence of CFTR. Bronchial epithelial barrier breakdown was time-dependent and morphotype-specific and mimicked by acute administration of gliotoxin. Our study also suggests a protective role for CFTR by turning on CFTR-dependent chloride transport in response to gliotoxin, a mechanism that will support mucociliary clearance, and could delay the loss of epithelial integrity during fungal development in vivo.


Asunto(s)
Fibrosis Quística , Gliotoxina , Micosis , Aspergillus fumigatus , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Cloruros , Células Epiteliales
4.
J Fungi (Basel) ; 9(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37504738

RESUMEN

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) affects Aspergillus fumigatus Af293's growth in vitro, iron metabolism, resistance in intermicrobial competition with Pseudomonas aeruginosa, resistance to osmotic stress, and resistance to the chitin synthase inhibitor nikkomycin Z. Here, we show that response to high temperature, Congo Red-induced stress, and hydrogen peroxide are also dependent on the viral infection status of A. fumigatus. AfuPmV-1- infected Af293 was more susceptible than virus-free Af293 to growth inhibition by high temperature, hydrogen peroxide, Congo Red exposure, and nutrient restriction. Increased resistance of virus-free fungus was observed when cultures were started from conidia but, in the case of high temperature and hydrogen peroxide, not when cultures were started from hyphae. This indicates that the virus impairs the stress response during the growth phase of germination of conidia and development into hyphae. In conclusion, our work indicates that AfuPmV-1 infection in A. fumigatus impairs host responses to stress, as shown by exposure to high temperature, oxidative stress such as hydrogen peroxide, and some cell wall stresses, as shown by exposure to Congo Red (in agreement with our previous observations using nikkomycin Z) and nutrient restriction.

5.
Viruses ; 15(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36992427

RESUMEN

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens the resistance of biofilms of common A. fumigatus reference strain Af293 in intermicrobial competition with Pseudomonas aeruginosa, and sensitizes A. fumigatus for antifungal effects of nikkomycin Z. We compared the sensitivity of two virus-infected (VI) and one virus-free (VF) Af293 strains to hypertonic salt. Salt stress impairs the growth of VI and VF at all times; VF control growth always exceeds VI, and VF growth in salt always exceeds VI. Since VF growth exceeds VI in the presence and absence of salt, we also examined growth in salt as a percentage of control growth. Initially, as a percentage of control, VI exceeded VF, but at 120 h VF began to exceed VI consistently even by this measure; thus, at that time the growth of VF in salt surges in relation to control growth, or, alternatively, its growth in salt persists compared to the relative inhibition of VI. In summary, virus infection impairs the response of A. fumigatus to several different stresses, including hypertonic salt.


Asunto(s)
Aspergillus fumigatus , Virus ARN , Cloruro de Sodio , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/fisiología , Aspergillus fumigatus/virología , Biopelículas , Virus ARN/fisiología , Estrés Salino , Cloruro de Sodio/farmacología
6.
Mycoses ; 66(5): 378-386, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36680371

RESUMEN

BACKGROUND: Candidiasis is the most common cause of fungal sepsis, and new agents are of interest to ameliorate current deficiencies in therapy. Nikkomycin Z (NIKZ) is an inhibitor of chitin synthase, interfering with fungal cell wall development. OBJECTIVES/METHODS: We studied NIKZ therapy of disseminated murine candidiasis, via continuous drug exposure, in drinking water, to compensate for rapid clearance of the drug. RESULTS: Drinking, and thus drug intake in the NIKZ groups, as well as body weight, was affected by the degree of illness. NIKZ effect on survival, despite reduced drinking initially after infection, was highly efficacious and dose-related, and comparable to fluconazole, though neither were curative with the regimens employed. The challenge was rapidly lethal to all untreated animals, whereas NIKZ groups achieved >50% survival. Assays of residual fungal infection were consistent with impressions of efficacy based on survival. Although NIKZ MIC for Candida albicans appeared unpromising, mycelial formation assays more closely correlated with in vivo observations. CONCLUSIONS: In vitro-in vivo disparity may be explained by NIKZ tissue concentration in the target tissue and/or by enhanced NIKZ action on mycelial formation, a morphological change in vivo wherein chitin synthesis is more critical, compared to NIKZ activity in inhibiting planktonic growth. A sustained release oral form of NIKZ in drug development for humans could hold promise, possibly also in future exploring previously demonstrated synergy in vitro with other antifungals.


Asunto(s)
Antifúngicos , Candidiasis , Humanos , Ratones , Animales , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Aminoglicósidos/uso terapéutico , Aminoglicósidos/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Fluconazol/uso terapéutico
7.
Viruses ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36680240

RESUMEN

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94-1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth.


Asunto(s)
Antifúngicos , Virus ARN , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus fumigatus/fisiología , Aminoglicósidos/farmacología , Aminoglicósidos/metabolismo , Anfotericina B/metabolismo , Anfotericina B/farmacología
8.
Front Cell Infect Microbiol ; 12: 817315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493738

RESUMEN

Persons with cystic fibrosis (CF) frequently suffer from Pseudomonas aeruginosa and Aspergillus fumigatus co-infections. There is evidence that co-infections with these interacting pathogens cause airway inflammation and aggravate deterioration of lung function. We recently showed that P. aeruginosa laboratory isolates synergistically interact with the anti-fungal azole voriconazole (VCZ), inhibiting biofilm metabolism of several A. fumigatus laboratory strains. Interaction was usually mediated via pyoverdine, but also via pyocyanin or pyochelin. Here we used planktonic filtrates of 7 mucoid and 9 non-mucoid P. aeruginosa isolates from CF patients, as well as 8 isolates without CF origin, and found that all of these isolates interacted with VCZ synergistically at their IC50 as well as higher dilutions. CF mucoid isolates showed the weakest interactive effects. Four non-mucoid P. aeruginosa CF isolates produced no or very low levels of pyoverdine and did not reach an IC50 against forming A. fumigatus biofilm; interaction with VCZ still was synergistic. A VCZ-resistant A. fumigatus strain showed the same level of susceptibility for P. aeruginosa anti-fungal activity as a VCZ-susceptible reference strain. Filtrates of most Pseudomonas isolates were able to increase anti-fungal activity of VCZ on a susceptible A. fumigatus strain. This was also possible for the VCZ-resistant strain. In summary these data show that clinical P. aeruginosa isolates, at varying degrees, synergistically interact with VCZ, and that pyoverdine is not the only molecule responsible. These data also strengthen the idea that during co-infections of A. fumigatus and P. aeruginosa lower concentrations of VCZ might be sufficient to control fungal growth.


Asunto(s)
Coinfección , Fibrosis Quística , Aspergillus fumigatus/metabolismo , Biopelículas , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Humanos , Pseudomonas aeruginosa/metabolismo , Voriconazol/farmacología
9.
J Fungi (Basel) ; 8(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35330242

RESUMEN

Pseudomonas aeruginosa and Aspergillus fumigatus frequently coexist in the airways of immunocompromised patients or individuals with cystic fibrosis. Ciprofloxacin (CIP) is a synthetic quinolone antibiotic commonly used to treat bacterial infections, such as those produced by Pseudomonas aeruginosa. CIP binds iron, and it is unclear what effect this complex would have on the mycobiome. The effects of CIP on Aspergillus were dependent on the iron levels present, and on the presence of Aspergillus siderophores. We found that CIP alone stimulated wildtype planktonic growth, but not biofilm metabolism. At high concentrations, CIP antagonized a profungal effect of iron on wildtype Aspergillus metabolism, presumably owing to iron chelation. CIP interfered with the metabolism and growth of an Aspergillus siderophore mutant, with the effect on metabolism being antagonized by iron. CIP acted synergistically with iron on the growth of the mutant, and, to a lesser extent, the wildtype. In summary, CIP can increase fungal growth or affect fungal metabolism, depending on the local iron concentration and available siderophores. Therefore, high local CIP concentrations during treatment of Pseudomonas-Aspergillus co-infections may increase the fungal burden.

10.
Front Cell Infect Microbiol ; 11: 734296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746024

RESUMEN

Pseudomonas aeruginosa and Aspergillus fumigatus infections frequently co-localize in lungs of immunocompromised patients and individuals with cystic fibrosis (CF). The antifungal activity of P. aeruginosa has been described for its filtrates. Pyoverdine and pyocyanin are the principal antifungal P. aeruginosa molecules active against A. fumigatus biofilm metabolism present in iron-limited or iron-replete planktonic P. aeruginosa culture filtrates, respectively. Using various P. aeruginosa laboratory wild-type strains (PA14, PAO1, PAK), we found antifungal activity against Aspergillus colonies on agar. Comparing 36 PA14 and 7 PAO1 mutants, we found that mutants lacking both major siderophores, pyoverdine and pyochelin, display higher antifungal activity on agar than their wild types, while quorum sensing mutants lost antifungal activity. Addition of ferric iron, but not calcium or magnesium, reduced the antifungal effects of P. aeruginosa on agar, whereas iron-poor agar enhanced antifungal effects. Antifungal activity on agar was mediated by PQS and HHQ, via MvfR. Among the MvfR downstream factors, rhamnolipids and elastase were produced in larger quantities by pyoverdine-pyochelin double mutants and showed antifungal activity on agar. In summary, antifungal factors produced by P. aeruginosa on agar differ from those produced by bacteria grown in liquid cultures, are dependent on quorum sensing, and are downregulated by the availability of ferric iron. Rhamnolipids and elastase seem to be major mediators of Pseudomonas' antifungal activity on a solid surface.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas , Aspergillus , Biopelículas , Humanos , Pseudomonas aeruginosa , Piocianina , Percepción de Quorum
11.
Antimicrob Agents Chemother ; 65(10): e0028521, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34252303

RESUMEN

Nikkomycin Z (nikZ) is a chitin synthase inhibitor. Efficacy against Coccidioides has been demonstrated in animal models of pulmonary or brain infection. Its short half-life in mice and in humans would necessitate divided daily dosing. We assayed nikZ efficacy in disseminated coccidioidomycosis (in a reduction of CFU design) and whether sustained release might be useful. Mice were challenged intravenously with low or high arthroconidial inocula. Fluconazole, clinically the most commonly used anticoccidioidal drug, was compared (gavage) at high dose to a dose range of nikZ administered intraperitoneally or, to mimic sustained release, administered continuously in drinking water. Therapy was given for 5 days. In vitro, both fluconazole and nikZ inhibited the isolate studied; nikZ was fungicidal. Oral nikZ therapy gave similar results to intraperitoneal nikZ and sterilized infection in most animals after low-inoculum challenge. In both challenges, oral nikZ produced greater reduction of CFU in organs (lung, liver, and spleen) than fluconazole. Oral nikZ doses of ≥200 mg/kg of body weight/day were particularly effective in all organs and were well tolerated. This efficacy occurred even though, after severe challenge, mice had reduced water intake, resulting in ingesting less than the desired dose, particularly initially after infection. This study shows, for the first time, efficacy of nikZ against disseminated coccidioidomycosis. Efficacy was shown after challenges producing different levels of severity of disease. This study also suggests the likely benefits of developing an extended release formulation supplying continuous systemic concentrations of nikZ.


Asunto(s)
Coccidioidomicosis , Aminoglicósidos , Animales , Antifúngicos/uso terapéutico , Coccidioidomicosis/tratamiento farmacológico , Preparaciones de Acción Retardada/uso terapéutico , Modelos Animales de Enfermedad , Ratones
12.
J Antimicrob Chemother ; 76(10): 2629-2635, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34269392

RESUMEN

OBJECTIVES: Meningitis is the most feared coccidioidomycosis complication. Nikkomycin Z (nikZ) is a chitin synthase inhibitor. A concern is short half-life, necessitating multiple dose/day regimens. We simulated extended release, providing nikZ in drinking water. Extended release would enhance convenience, and adherence, for patients. METHODS: Coccidioides posadasii was injected intracerebrally into mice. Twelve day treatments began on Day 3. Fluconazole was given 100 mg/kg once daily (gavage); designed doses of nikZ 30, 100 or 300 mg/kg/day in drinking water. On Day 30 post-treatment, survivors were euthanized, brain cfu quantitated and cfu in other organs assessed. RESULTS: nikZ was stable in drinking water. Survival was 11%, 50%, 70%, 90% and 100% in untreated controls, fluconazole and nikZ 30, 100 and 300 mg/kg/day, respectively ; nikZ 300 mg/kg/day was superior (P ≤ 0.01) to fluconazole. Brains were sterilized in 0%, 20%, 86%, 89% and 80% of mice, respectively; nikZ 100 or 300 mg/kg/day was superior (P ≤ 0.01) to fluconazole. Clearance of infection in other organs was similar. All decreased drinking after infection, causing nikZ mice to ingest less than the desired dose in early therapy; despite this, they recovered sufficiently to resume pre-infection drinking and designed drug intakes. Thus, when sickest, even less than the designed dose was sufficient to enable recovery. CONCLUSIONS: This efficacy supports the development of sustained-release nikZ. Decreased intake wouldn't be a factor in humans, receiving drug via extended-release pill or continuous IV infusion. In prior studies (twice daily nikZ) of murine coccidioidal meningitis, results were inferior, suggesting sustained release may provide both convenience and superior outcomes.


Asunto(s)
Coccidioidomicosis , Aminoglicósidos , Animales , Antifúngicos/uso terapéutico , Coccidioides , Coccidioidomicosis/tratamiento farmacológico , Preparaciones de Acción Retardada , Humanos , Ratones
13.
Viruses ; 13(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923408

RESUMEN

Aspergillus and Pseudomonas compete in nature, and are the commonest bacterial and fungal pathogens in some clinical settings, such as the cystic fibrosis lung. Virus infections of fungi occur naturally. Effects on fungal physiology need delineation. A common reference Aspergillus fumigatus strain, long studied in two (of many) laboratories, was found infected with the AfuPmV-1 virus. One isolate was cured of virus, producing a virus-free strain. Virus from the infected strain was purified and used to re-infect three subcultures of the virus-free fungus, producing six fungal strains, otherwise isogenic. They were studied in intermicrobial competition with Pseudomonasaeruginosa. Pseudomonas culture filtrates inhibited forming or preformed Aspergillus biofilm from infected strains to a greater extent, also seen when Pseudomonas volatiles were assayed on Aspergillus. Purified iron-chelating Pseudomonas molecules, known inhibitors of Aspergillus biofilm, reproduced these differences. Iron, a stimulus of Aspergillus, enhanced the virus-free fungus, compared to infected. All infected fungal strains behaved similarly in assays. We show an important consequence of virus infection, a weakening in intermicrobial competition. Viral infection may affect the outcome of bacterial-fungal competition in nature and patients. We suggest that this occurs via alteration in fungal stress responses, the mechanism best delineated here is a result of virus-induced altered Aspergillus iron metabolism.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/virología , Virus Fúngicos/patogenicidad , Interacciones Microbiota-Huesped/fisiología , Interacciones Microbianas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Hierro/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología
14.
Pathogens ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925818

RESUMEN

Pseudomonas aeruginosa and Aspergillus fumigatus are pathogens that are associated with deterioration of lung function, e.g., in persons with cystic fibrosis (CF). There is evidence that co-infections with these pathogens cause airway inflammation and aggravate pathology in CF lungs. Intermicrobial competition of P. aeruginosa and A. fumigatus has been described, but it is unknown how anti-fungal therapy is affected. The anti-fungal azole voriconazole (VCZ), supernatants of P. aeruginosa laboratory isolates PA14 or PAO1, or clinical isolate Pa10 independently inhibited biofilm metabolism of A. fumigatus isolates 10AF and AF13073. When VCZ and supernatants were combined at their IC50s, synergistic effects on A. fumigatus were found. Synergistic effects were no longer observed when P. aeruginosa supernatants were prepared in the presence of iron, or when P. aeruginosa mutants were lacking the ability to produce pyoverdine and pyochelin. Combination of pure P. aeruginosa products pyoverdine, pyochelin, and pyocyanin with VCZ showed synergistic anti-fungal effects. Combining VCZ with P. aeruginosa supernatants also improved its MIC and MFC against planktonic A. fumigatus. In summary, in the case of P. aeruginosa-A. fumigatus co-infections, it appeared that the P. aeruginosa co-infection facilitated therapy of the Aspergillus; lower concentrations of VCZ might be sufficient to control fungal growth.

15.
J Fungi (Basel) ; 7(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925067

RESUMEN

The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule for Pseudomonas aeruginosa that regulates virulence factors, chelates iron, and is an important factor in interactions with eukaryotes, including fungi and mammalian hosts. It was previously shown to inhibit or boost Aspergillus, depending on the milieu iron concentration. We studied several molecular modifications of the PQS molecule, and their effects on Aspergillus biofilm metabolism and growth in vitro, and the effects of iron supplementation. We found that most molecules inhibited Aspergillus at concentrations similar to that of PQS, but with relatively flat dose-responses, and all were less potent than PQS. The inhibition was reversible by iron, suggesting interference with fungal iron metabolism. Stimulation of Aspergillus was not noted. We conclude that the critical Aspergillus-inhibiting moeities of the PQS molecule were partially, but not completely, interfered with by molecular modifications at several sites on the PQS molecule. The mechanism, as with PQS, appears to relate to fungal iron metabolism.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33782009

RESUMEN

Coccidioides spp. are important pathogens in regions where they are endemic, and new treatment options are needed. Here, isavuconazonium sulfate (ISAVUSULF) and fluconazole (FLU) were evaluated in experimental disseminated coccidioidomycosis to characterize drug exposures associated with efficacy. Broth macrodilution was performed on Coccidioides isolates to measure minimal effective concentrations (MEC) and minimal fungicidal concentrations (MFC). Mice were inoculated with Coccidioides posadasii (Silveira strain). Treatment started 4 days postinoculation. In model 1, mice were treated for 19 days, followed by 30 days of off-therapy observation, measuring survival through day 49 and residual fungal burden. Treatments included ISAVUSULF (prodrug; 186, 279, or 372 mg/kg twice daily), FLU (20 or 100 mg/kg once daily), and no treatment. Model 2 included 7-day treatment with ISAVUSULF (prodrug; 74.4, 111.6, or 148.8 mg/kg twice daily), FLU (20 or 100 mg/kg once daily), and no treatment. Serial plasma and tissues samples were obtained for pharmacokinetics (PK) and fungal burden measurement, respectively. Fifty percent minimal effective concentration (MEC50) values were 0.39 mg/liter (isavuconazole [ISAV]) and 12.5 mg/liter (FLU). Treatment with ISAVUSULF186 or with either FLU dose resulted in higher survival compared to that in the untreated group. Treatment with ISAVUSULF186 or ISAVUSULF279 twice daily or FLU100 reduced fungal burden in all organs (model 1). In model 2, a >1 log10 CFU/organ reduction was demonstrated, with ISAV area under the concentration-time curve (AUC) values achieved with 111.6 mg/kg twice daily (56.8 mg · h/liter) in the spleen and liver. FLU AUC values of 100 and 500 mg·h/liter for 20 and 100 mg/kg doses, respectively, resulted in a >1 log10 CFU/organ mean reduction in all organs. ISAVUSULF and FLU improved survival and reduced fungal burden. Increasing plasma drug exposures resulted in decreases in fungal burden.


Asunto(s)
Coccidioidomicosis , Preparaciones Farmacéuticas , Animales , Antifúngicos/uso terapéutico , Coccidioides , Coccidioidomicosis/tratamiento farmacológico , Fluconazol/uso terapéutico , Ratones , Modelos Teóricos , Nitrilos , Piridinas , Triazoles
17.
Med Mycol ; 59(5): 453-464, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32827431

RESUMEN

Airways of immunocompromised patients, or individuals with cystic fibrosis (CF), are common ground for Pseudomonas aeruginosa and Aspergillus fumigatus infections. Hence, in such a microenvironment both pathogens compete for resources. While under limiting iron conditions the siderophore pyoverdine is the most effective antifungal P. aeruginosa product, we now provide evidence that under nonlimiting iron conditions P. aeruginosa supernatants lack pyoverdine but still possess considerable antifungal activity. Spectrometric analyses of P. aeruginosa supernatants revealed the presence of phenazines, such as pyocyanin, only under nonlimiting iron conditions. Supernatants of quorum sensing mutants of strain PA14, defective in phenazine production, as well as supernatants of the P. aeruginosa strain PAO1, lacked pyocyanin, and were less inhibitory toward A. fumigatus biofilms under nonlimiting iron conditions. When blood as a natural source of iron was present during P. aeruginosa supernatant production, pyoverdine was absent, and phenazines, including pyocyanin, appeared, resulting in an antifungal effect on A. fumigatus biofilms. Pure pyocyanin reduced A. fumigatus biofilm metabolism. In summary, P. aeruginosa has mechanisms to compete with A. fumigatus under limiting and non-limiting iron conditions, and can switch from iron-denial-based to toxin-based antifungal activity. This has implications for the evolution of the microbiome in clinical settings where the two pathogens co-exist. Important differences in the iron response of P. aeruginosa laboratory strains PA14 and PAO1 were also uncovered.


P. aeruginosa (Pa) and A. fumigatus (Af) form biofilms in lungs of persons with cystic fibrosis and interact via virulence factors. Pa inhibits Af via different factors, depending on the availability of iron from blood. Low iron favors the use of pyoverdine, high iron the use of the toxin pyocyanin.


Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Piocianina/farmacología , Antifúngicos/metabolismo , Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Proteínas Bacterianas/farmacología , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hierro/metabolismo , Interacciones Microbianas , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Percepción de Quorum
18.
Virulence ; 11(1): 1329-1336, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33017225

RESUMEN

Pseudomonas aeruginosa (PA) and Aspergillus fumigatus (AF) chronically colonize the airways of patients with cystic fibrosis or chronic immunosuppression and mutually affect each other's pathogenesis. Here, we evaluated IncuCyte time-lapse imaging and NeuroTrackTM (NT) analysis (Wurster et al., 2019, mBio) as a toolbox to study mycelial expansion and morphogenesis of AF during interaction with PA. Co-incubation of AF with supernatant filtrates of wild-type (WT) PA strains strongly inhibited hyphal growth and branching. Consonant with prior metabolic studies, pyoverdine-deficient PA mutants had significantly attenuated inhibitory capacity. Accordingly, purified PA products pyoverdine and pyocyanin suppressed mycelial expansion of AF in a concentration-dependent way. Using fluorescence-guided tracking of GFP-AF293 mycelia during co-culture with live WT PA cells, we found significant inoculum-dependent mycelial growth inhibition and robust precision of the NT algorithm. Collectively, our experiments position IncuCyte NT as an efficient platform for longitudinal analysis of fungal growth and morphogenesis during bacterial co-infection.


Asunto(s)
Aspergillus fumigatus/citología , Aspergillus fumigatus/crecimiento & desarrollo , Interacciones Microbianas , Pseudomonas aeruginosa/fisiología , Imagen de Lapso de Tiempo/métodos , Biopelículas/crecimiento & desarrollo , Proteínas Fluorescentes Verdes , Humanos , Hifa/crecimiento & desarrollo , Imagen Óptica/métodos
19.
Med Mycol ; 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32844203

RESUMEN

Given the few antifungal classes available to treat aspergillosis, this study aimed to evaluate the in vitro antifungal activity of diphenyl diselenide (PhSe)2 alone and in combination with classical antifungals against Aspergillus spp., and its in vivo activity in a systemic experimental aspergillosis model. We performed in vitro broth microdilution assay of (PhSe)2 against 32 Aspergillus isolates; and a checkboard assay to test the interaction of this compound with itraconazole (ITC), voriconazole (VRC), amphotericin B (AMB), and caspofungin (CAS), against nine Aspergillus isolates. An experimental model of invasive aspergillosis in mice was studied, and survival curves were compared between an untreated group and groups treated with 100 mg/kg ITC, or (PhSe)2 in different dosages (10 mg/kg, 50 mg/kg and 100 mg/kg). All Aspergillus non-fumigatus and 50% of A. fumigatus were inhibited by (PhSe)2 in concentrations ≤ 64 µg/ml, with significant differences in MICs between the sections. Synergism or additive effect in the in vitro (PhSe)2 interaction with VRC and CAS was observed against the majority of isolates, and with ITC against the non-fumigatus strains. In addition to the inhibitory interaction, (PhSe)2 was able to add a fungicidal effect to CAS. Survival curves from the systemic experimental aspergillosis model demonstrated that the inoculum caused an acute and lethal infection in mice, and no treatment applied significantly prolonged survival over that of the control group. The results highlight the promising activity of (PhSe)2 against Aspergillus species, but more in vivo studies are needed to determine its potential applicability in aspergillosis treatment. LAY SUMMARY: The activity of diphenyl diselenide (PhSe)2 alone and in combination with itraconazole, voriconazole, and caspofungin, is described against three of the most pathogenic Aspergillus sections. (PhSe)2 may prove useful in therapy of infection in future; further study is required.

20.
J Fungi (Basel) ; 6(3)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759879

RESUMEN

Meningitis is the most devastating form of coccidioidomycosis. A convenient, rapid diagnostic method could result in early treatment and avoid many meningitis complications. We studied cerebrospinal fluid (CSF) samples in patients with documented coccidioidal meningitis, and controls, with complement fixation (CF), immunodiffusion (ID) (the "classical" assays), lateral flow assays (LFA; one-strip and two-strip), and two enzyme immunoassays (EIA). The two-strip LFA and EIAs not only enabled separate testing for IgG and IgM antibodies separately, but also could aggregate results for each method. CF with ID or the aggregate use of IgG and IgM tests were considered optimal test uses. LFAs and EIAs were evaluated at 1:21 and 1:441 dilutions of specimens. All assays were compared to true patient status. With 49 patient specimens and 40 controls, this is the largest comparative study of CSF coccidioidal diagnostics. Sensitivity of these tests ranged from 71-95% and specificity 90-100%. IgM assays were less sensitive. Assays at 1:441 were similarly specific but less sensitive, suggesting that serial dilutions of samples could result in assays yielding titers. Agreement of positive results on cases was 87-100%. When kits are available, hospital laboratories in endemic areas can perform testing. LFA assays do not require a laboratory, are simple to use, and give rapid results, potentially even at the bedside.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...