Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 19(1): 8, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090516

RESUMEN

BACKGROUND: Intrathecal drug delivery has a significant role in pain management and central nervous system (CNS) disease therapeutics. A fluid-physics based tool to assist clinicians in choosing specific drug doses to the spine or brain may help improve treatment schedules. METHODS: This study applied computational fluid dynamics (CFD) and in vitro model verification to assess intrathecal drug delivery in an anatomically idealized model of the human CSF system with key anatomic features of the CNS. Key parameters analyzed included the role of (a) injection location including lumbar puncture (LP), cisterna magna (CM) and intracerebroventricular (ICV), (b) LP injection rate, injection volume, and flush volume, (c) physiologic factors including cardiac-induced and deep respiration-induced CSF stroke volume increase. Simulations were conducted for 3-h post-injection and used to quantify spatial-temporal tracer concentration, regional area under the curve (AUC), time to maximum concentration (Tmax), and maximum concentration (Cmax), for each case. RESULTS: CM and ICV increased AUC to brain regions by ~ 2 logs compared to all other simulations. A 3X increase in bolus volume and addition of a 5 mL flush both increased intracranial AUC to the brain up to 2X compared to a baseline 5 mL LP injection. In contrast, a 5X increase in bolus rate (25 mL/min) did not improve tracer exposure to the brain. An increase in cardiac and respiratory CSF movement improved tracer spread to the brain, basal cistern, and cerebellum up to ~ 2 logs compared to the baseline LP injection. CONCLUSION: The computational modeling approach provides ability to conduct in silico trials representative of CSF injection protocols. Taken together, the findings indicate a strong potential for delivery protocols to be optimized to reach a target region(s) of the spine and/or brain with a needed therapeutic dose. Parametric modification of bolus rate/volume and flush volume was found to have impact on tracer distribution; albeit to a smaller degree than injection location, with CM and ICV injections resulting in greater therapeutic dose to brain regions compared to LP. CSF stroke volume and frequency both played an important role and may potentially have a greater impact than the modest changes in LP injection protocols analyzed such as bolus rate, volume, and flush.


Asunto(s)
Líquido Cefalorraquídeo , Cisterna Magna , Sistemas de Liberación de Medicamentos , Inyecciones Intraventriculares , Inyecciones Espinales , Modelos Teóricos , Simulación por Computador , Humanos , Hidrodinámica
2.
Fluids Barriers CNS ; 17(1): 23, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32178689

RESUMEN

BACKGROUND: Blood removal from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce the risk of related secondary brain injury. We formulated a computational fluid dynamics (CFD) model to investigate the impact of a dual-lumen catheter-based CSF filtration system, called Neurapheresis™ therapy, on blood removal from CSF compared to lumbar drain. METHODS: A subject-specific multiphase CFD model of CSF system-wide solute transport was constructed based on MRI measurements. The Neurapheresis catheter geometry was added to the model within the spinal subarachnoid space (SAS). Neurapheresis flow aspiration and return rate was 2.0 and 1.8 mL/min, versus 0.2 mL/min drainage for lumbar drain. Blood was modeled as a bulk fluid phase within CSF with a 10% initial tracer concentration and identical viscosity and density as CSF. Subject-specific oscillatory CSF flow was applied at the model inlet. The dura and spinal cord geometry were considered to be stationary. Spatial-temporal tracer concentration was quantified based on time-average steady-streaming velocities throughout the domain under Neurapheresis therapy and lumbar drain. To help verify CFD results, an optically clear in vitro CSF model was constructed with fluorescein used as a blood surrogate. Quantitative comparison of numerical and in vitro results was performed by linear regression of spatial-temporal tracer concentration over 24-h. RESULTS: After 24-h, tracer concentration was reduced to 4.9% under Neurapheresis therapy compared to 6.5% under lumbar drain. Tracer clearance was most rapid between the catheter aspiration and return ports. Neurapheresis therapy was found to have a greater impact on steady-streaming compared to lumbar drain. Steady-streaming in the cranial SAS was ~ 50× smaller than in the spinal SAS for both cases. CFD results were strongly correlated with the in vitro spatial-temporal tracer concentration under Neurapheresis therapy (R2 = 0.89 with + 2.13% and - 1.93% tracer concentration confidence interval). CONCLUSION: A subject-specific CFD model of CSF system-wide solute transport was used to investigate the impact of Neurapheresis therapy on tracer removal from CSF compared to lumbar drain over a 24-h period. Neurapheresis therapy was found to substantially increase tracer clearance compared to lumbar drain. The multiphase CFD results were verified by in vitro fluorescein tracer experiments.


Asunto(s)
Eliminación de Componentes Sanguíneos/métodos , Sangre , Catéteres , Líquido Cefalorraquídeo , Drenaje , Diseño de Equipo , Modelos Biológicos , Punción Espinal , Hemorragia Subaracnoidea/terapia , Adulto , Eliminación de Componentes Sanguíneos/instrumentación , Femenino , Humanos , Hidrodinámica , Imagen por Resonancia Magnética , Adulto Joven
3.
Fluids Barriers CNS ; 17(1): 4, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959193

RESUMEN

BACKGROUND: Developing novel therapeutic agents to treat amyotrophic lateral sclerosis (ALS) has been difficult due to multifactorial pathophysiologic processes at work. Intrathecal drug administration shows promise due to close proximity of cerebrospinal fluid (CSF) to affected tissues. Development of effective intrathecal pharmaceuticals will rely on accurate models of how drugs are dispersed in the CSF. Therefore, a method to quantify these dynamics and a characterization of differences across disease states is needed. METHODS: Complete intrathecal 3D CSF geometry and CSF flow velocities at six axial locations in the spinal canal were collected by T2-weighted and phase-contrast MRI, respectively. Scans were completed for eight people with ALS and ten healthy controls. Manual segmentation of the spinal subarachnoid space was performed and coupled with an interpolated model of CSF flow within the spinal canal. Geometric and hydrodynamic parameters were then generated at 1 mm slice intervals along the entire spine. Temporal analysis of the waveform spectral content and feature points was also completed. RESULTS: Comparison of ALS and control groups revealed a reduction in CSF flow magnitude and increased flow propagation velocities in the ALS cohort. Other differences in spectral harmonic content and geometric comparisons may support an overall decrease in intrathecal compliance in the ALS group. Notably, there was a high degree of variability between cases, with one ALS patient displaying nearly zero CSF flow along the entire spinal canal. CONCLUSION: While our sample size limits statistical confidence about the differences observed in this study, it was possible to measure and quantify inter-individual and cohort variability in a non-invasive manner. Our study also shows the potential for MRI based measurements of CSF geometry and flow to provide information about  the hydrodynamic environment of the spinal subarachnoid space. These dynamics may be studied further to understand the behavior of CSF solute transport in healthy and diseased states.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Imagen por Resonancia Magnética , Espacio Subaracnoideo/diagnóstico por imagen , Adulto , Líquido Cefalorraquídeo/fisiología , Simulación por Computador , Humanos , Hidrodinámica , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Biológicos , Canal Medular/fisiología
4.
J Biomech Eng ; 142(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343659

RESUMEN

It has been hypothesized that early and rapid filtration of blood from cerebrospinal fluid (CSF) in postsubarachnoid hemorrhage patients may reduce hospital stay and related adverse events. In this study, we formulated a subject-specific computational fluid dynamics (CFD) model to parametrically investigate the impact of a novel dual-lumen catheter-based CSF filtration system, the Neurapheresis™ system (Minnetronix Neuro, Inc., St. Paul, MN), on intrathecal CSF dynamics. The operating principle of this system is to remove CSF from one location along the spine (aspiration port), externally filter the CSF routing the retentate to a waste bag, and return permeate (uncontaminated CSF) to another location along the spine (return port). The CFD model allowed parametric simulation of how the Neurapheresis system impacts intrathecal CSF velocities and steady-steady streaming under various Neurapheresis flow settings ranging from 0.5 to 2.0 ml/min and with a constant retentate removal rate of 0.2 ml/min simulation of the Neurapheresis system were compared to a lumbar drain simulation with a typical CSF removal rate setting of 0.2 ml/min. Results showed that the Neurapheresis system at a maximum flow of 2.0 ml/min increased average steady streaming CSF velocity 2× in comparison to lumbar drain (0.190 ± 0.133 versus 0.093 ± 0.107 mm/s, respectively). This affect was localized to the region within the Neurapheresis flow loop. The mean velocities introduced by the flow loop were relatively small in comparison to normal cardiac-induced CSF velocities.


Asunto(s)
Simulación por Computador , Hidrodinámica , Modelos Biológicos , Columna Vertebral
5.
PLoS One ; 14(2): e0212239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30811449

RESUMEN

Recent advancements have been made toward understanding the diagnostic and therapeutic potential of cerebrospinal fluid (CSF) and related hydrodynamics. Increased understanding of CSF dynamics may lead to improved detection of central nervous system (CNS) diseases and optimized delivery of CSF based CNS therapeutics, with many proposed therapeutics hoping to successfully treat or cure debilitating neurological conditions. Before significant strides can be made toward the research and development of interventions designed for human use, additional research must be carried out with representative subjects such as non-human primates (NHP). This study presents a geometric and hydrodynamic characterization of CSF in eight cynomolgus monkeys (Macaca fascicularis) at baseline and two-week follow-up. Results showed that CSF flow along the entire spine was laminar with a Reynolds number ranging up to 80 and average Womersley number ranging from 4.1-7.7. Maximum CSF flow rate occurred ~25 mm caudal to the foramen magnum. Peak CSF flow rate ranged from 0.3-0.6 ml/s at the C3-C4 level. Geometric analysis indicated that average intrathecal CSF volume below the foramen magnum was 7.4 ml. The average surface area of the spinal cord and dura was 44.7 and 66.7 cm2 respectively. Subarachnoid space cross-sectional area and hydraulic diameter ranged from 7-75 mm2 and 2-3.7 mm, respectively. Stroke volume had the greatest value of 0.14 ml at an axial location corresponding to C3-C4.


Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Imagen por Resonancia Magnética , Columna Vertebral/diagnóstico por imagen , Animales , Femenino , Hidrodinámica , Macaca fascicularis , Masculino
6.
J Biomech Eng ; 140(8)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003260

RESUMEN

Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. This CFD model allowed detailed investigation of the impact of NR on CSF velocities that is not possible in vivo using magnetic resonance imaging (MRI) or other noninvasive imaging methods. Results showed that NR altered CSF dynamics in terms of velocity field, steady-streaming, and vortical structures. Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Hidrodinámica , Modelos Anatómicos , Raíces Nerviosas Espinales/anatomía & histología , Raíces Nerviosas Espinales/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Modelación Específica para el Paciente , Raíces Nerviosas Espinales/diagnóstico por imagen , Espacio Subaracnoideo/anatomía & histología , Espacio Subaracnoideo/diagnóstico por imagen , Espacio Subaracnoideo/fisiología , Adulto Joven
7.
IEEE Trans Biomed Eng ; 65(7): 1516-1523, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28961100

RESUMEN

GOAL: Develop and test an MRI-compatible hydrodynamic simulator of cerebrospinal fluid (CSF) motion in the cervical spinal subarachnoid space. Four anatomically realistic subject-specific models were created based on a 22-year-old healthy volunteer and a five-year-old patient diagnosed with Chiari I malformation. METHODS: The in vitro models were based on manual segmentation of high-resolution T2-weighted MRI of the cervical spine. Anatomically realistic dorsal and ventral spinal cord nerve rootlets (NR) were added. Models were three dimensional (3-D) printed by stereolithography with 50-µm layer thickness. A computer controlled pump system was used to replicate the shape of the subject specific in vivo CSF flow measured by phase-contrast MRI. Each model was then scanned by T2-weighted and 4-D phase contrast MRI (4D flow). RESULTS: Cross-sectional area, wetted perimeter, and hydraulic diameter were quantified for each model. The oscillatory CSF velocity field (flow jets near NR, velocity profile shape, and magnitude) had similar characteristics to previously reported studies in the literature measured by in vivo MRI. CONCLUSION: This study describes the first MRI-compatible hydrodynamic simulator of CSF motion in the cervical spine with anatomically realistic NR. NR were found to impact CSF velocity profiles to a great degree. SIGNIFICANCE: CSF hydrodynamics are thought to be altered in craniospinal disorders such as Chiari I malformation. MRI scanning techniques and protocols can be used to quantify CSF flow alterations in disease states. The provided in vitro models can be used to test the reliability of these protocols across MRI scanner manufacturers and machines.


Asunto(s)
Líquido Cefalorraquídeo , Vértebras Cervicales , Impresión Tridimensional , Médula Espinal , Adulto , Líquido Cefalorraquídeo/diagnóstico por imagen , Líquido Cefalorraquídeo/fisiología , Vértebras Cervicales/anatomía & histología , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/fisiología , Preescolar , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Biológicos , Flujo Pulsátil/fisiología , Médula Espinal/anatomía & histología , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Adulto Joven
8.
Fluids Barriers CNS ; 14(1): 36, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258534

RESUMEN

BACKGROUND: The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. METHODS: A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. RESULTS: The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm3. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm3. Surface area of these features was 318.52, 112.2 and 232.1 cm2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. CONCLUSIONS: This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics.


Asunto(s)
Modelos Anatómicos , Modelos Neurológicos , Médula Espinal/anatomía & histología , Raíces Nerviosas Espinales/anatomía & histología , Espacio Subaracnoideo/anatomía & histología , Adulto , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Médula Espinal/diagnóstico por imagen , Raíces Nerviosas Espinales/diagnóstico por imagen , Espacio Subaracnoideo/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...