Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 39(6): 696-707, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27997826

RESUMEN

Most glial cells show pronounced migratory abilities and generally follow axonal trajectories to reach their final destination. However, the molecular cues controlling their directional migration are largely unknown. To address this, we established glial migration onto the developing Drosophila leg imaginal disc as a model. Here, CNS-derived glial cells move along nerves containing motoaxons and sensory axons. Along their path, glial cells encounter at least three choice points where directional decisions are needed. Subsequent genetic analyses allowed uncovering mechanisms that escaped previous studies. Most strikingly, we found that glial cells require the expression of the repulsive guidance receptors PlexinA/B and Robo2 to prevent breaking away from the nerve. Interestingly, the repulsive ligands are presented by the underlying leg imaginal disc epithelium, which appears to push glial cells toward the axon fascicle. In conclusion, nerve formation not only requires neuron-glia interaction but also depends on glial-epithelial communication.


Asunto(s)
Movimiento Celular , Drosophila melanogaster/citología , Células Epiteliales/citología , Tejido Nervioso/citología , Neuroglía/citología , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Genes de Insecto , Discos Imaginales/citología , Larva/genética , Larva/crecimiento & desarrollo , Ligandos , Neuroglía/metabolismo , Transducción de Señal
2.
Wiley Interdiscip Rev Dev Biol ; 4(6): 623-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26178654

RESUMEN

Glial cells are important constituents of the nervous system and a hallmark of these cells are their pronounced migratory abilities. In Drosophila, glial lineages have been well described and some of the molecular mechanisms necessary to guide migrating glial cells to their final target sites have been identified. With the onset of migration, glial cells are already specified into one of five main glial cell types. The perineurial and subperineurial glial cells are eventually located at the outer surface of the Drosophila nervous system and constitute the blood-brain barrier. The cortex glial cells ensheath all neuroblasts and their progeny and reside within the central nervous system. Astrocyte-like cells invade the neuropil to control synaptic function and ensheathing glial cells encase the entire neuropil. Within the peripheral nervous system, wrapping glial cells ensheath individual axons or axon fascicles. Here, we summarize the current knowledge on how differentiation of glial cells into the specific subtypes is orchestrated. Furthermore, we discuss sequencing data that will facilitate further analyses of glial differentiation in the fly nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Drosophila/fisiología , Neuroglía/fisiología , Animales , Axones/fisiología , Movimiento Celular/fisiología , Sistema Nervioso Central/fisiología , Sistema Nervioso Periférico/fisiología
3.
Development ; 142(12): 2184-93, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26015542

RESUMEN

In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.


Asunto(s)
Drosophila melanogaster/embriología , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Neurogénesis/genética , Neuroglía/citología , Animales , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Activación Enzimática , Ojo/inervación , Redes Reguladoras de Genes , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
4.
Cell ; 156(3): 428-39, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24462247

RESUMEN

Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology.


Asunto(s)
División Celular , Membrana Celular/química , Lípidos de la Membrana/análisis , Cromatografía Liquida , Citocinesis , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lípidos de la Membrana/biosíntesis , Redes y Vías Metabólicas , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo
5.
ACS Chem Biol ; 5(1): 79-90, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20014865

RESUMEN

Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.


Asunto(s)
Citocinesis/fisiología , Transducción de Señal , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...