Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891845

RESUMEN

The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Leucina Zippers , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563568

RESUMEN

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Meristema/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
3.
Development ; 145(11)2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29739839

RESUMEN

The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, which is driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Meristema/crecimiento & desarrollo , Microtúbulos/metabolismo , Fenómenos Biomecánicos/fisiología , Proliferación Celular/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/genética , Microtúbulos/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 372(1720)2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28348258

RESUMEN

The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. We will discuss here flower formation at the SAM, which involves a complex network of regulatory genes and signalling molecules. A major downstream target of this network is the extracellular matrix or cell wall, which is a local determinant for both growth rates and growth directions. We will discuss here a number of recent studies aimed at analysing the link between cell wall structure and molecular regulation. This has involved multidisciplinary approaches including quantitative imaging, molecular genetics, computational biology and biophysics. A scenario emerges where molecular networks impact on both cell wall anisotropy and synthesis, thus causing the rapid outgrowth of organs at specific locations. More specifically, this involves two interdependent processes: the activation of wall remodelling enzymes and changes in microtubule dynamics.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.


Asunto(s)
Flores/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Desarrollo de la Planta
5.
Elife ; 4: e07811, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26623515

RESUMEN

The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/fisiología , Expresión Génica , Proteínas de Homeodominio/biosíntesis , Meristema/fisiología , Brotes de la Planta/fisiología , Estrés Mecánico , Regulación de la Expresión Génica de las Plantas
6.
Curr Opin Plant Biol ; 28: 137-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26583832

RESUMEN

The emergence of complex shapes during the development of plants is under the control of genetically determined molecular networks. Such regulatory networks, comprising hormones and transcription factors, regulate the collective behavior of cell growth within a tissue. Because all the cells within a tissue are linked together by the cell wall, their collective growth generates a good amount of mechanical stress. In the last few years a compelling amount of evidence has shown that growth-generated mechanical stress can feed back on plant developmental programs by modifying cell growth. This involves primarily responses from the microtubules and interaction with auxin transport and signaling. Here we discuss the most recent advances in the understanding of mechanical feedbacks in plant development.


Asunto(s)
Pared Celular/microbiología , Desarrollo de la Planta , Estrés Mecánico , Fenómenos Biomecánicos , Retroalimentación Fisiológica
7.
Plant Signal Behav ; 10(11): e1000150, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26337646

RESUMEN

The great complexity and plasticity of aerial plant shapes largely results from the activity of the shoot apical meristem (SAM), a group of undifferentiated cells which produces all the aboveground organs of the plant. Organogenesis at the SAM is regulated by the hormone auxin, which, through an integration of active transport, signalling and transcriptional regulation, determines the positional and temporal information dictating where, when, and how a new organ will be formed. At the cellular level, the information stemming from the regulatory molecular networks influences the growth of the cells within the tissue to give rise to the final organ shape. The growth of plant cells is mainly controlled by the cell wall, a rigid structure mainly made of polysaccharides, which surrounds the cells and links them together in an organismal continuum. Over the years, several lines of evidence have pointed at a role for the regulation of the elasticity of the cell wall, downstream of auxin action, in the formation of organs at the SAM. We have recently shown that auxin also induces a shift toward isotropic growth by modulating the organization of cortical microtubules in peripheral SAM cells, which promotes organ formation. Here, we discuss our results and identify new hypotheses to drive future research.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Morfogénesis , Anisotropía , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Morfogénesis/efectos de los fármacos
8.
Plant Physiol ; 168(1): 292-306, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25783413

RESUMEN

Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Sequías , Proteínas de Unión al ARN/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Solanum tuberosum/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
9.
Curr Biol ; 24(19): 2335-42, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25264254

RESUMEN

To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenómenos Biomecánicos , Pared Celular/metabolismo , Katanina , Meristema/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo
10.
Curr Biol ; 24(6): R237-8, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24650911

RESUMEN

Since plant cells cannot move relative to each other, plant organogenesis mainly depends on the strict coordination of cell growth and proliferation. Recent work suggests that this implies a subtle combination of biochemical and physical interactions between neighboring cells.


Asunto(s)
Arabidopsis/citología , Arabidopsis/embriología , Organogénesis de las Plantas/fisiología , Raíces de Plantas/embriología , Semillas/citología
11.
Plant Physiol ; 163(1): 331-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23893169

RESUMEN

Shade-intolerant plants perceive the reduction in the ratio of red light (R) to far-red light (FR) as a warning of competition with neighboring vegetation and display a suite of developmental responses known as shade avoidance. In recent years, major progress has been made in understanding the molecular mechanisms underlying shade avoidance. Despite this, little is known about the dynamics of this response and the cascade of molecular events leading to plant adaptation to a low-R/FR environment. By combining genome-wide expression profiling and computational analyses, we show highly significant overlap between shade avoidance and deetiolation transcript profiles in Arabidopsis (Arabidopsis thaliana). The direction of the response was dissimilar at the early stages of shade avoidance and congruent at the late ones. This latter regulation requires LONG HYPOCOTYL IN FAR RED1/SLENDER IN CANOPY SHADE1 and phytochrome A, which function largely independently to negatively control shade avoidance. Gene network analysis highlights a subnetwork containing ELONGATED HYPOCOTYL5 (HY5), a master regulator of deetiolation, in the wild type and not in phytochrome A mutant upon prolonged low R/FR. Network analysis also highlights a direct connection between HY5 and HY5 HOMOLOG (HYH), a gene functionally implicated in the inhibition of hypocotyl elongation and known to be a direct target of the HY5 transcription factor. Kinetics analysis show that the HYH gene is indeed late induced by low R/FR and that its up-regulation depends on the action of HY5, since it does not occur in hy5 mutant. Therefore, we propose that one way plants adapt to a low-R/FR environment is by enhancing HY5 function.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de la radiación , Luz , Arabidopsis/genética , Arabidopsis/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Fototransducción , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
J Exp Bot ; 64(9): 2579-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23585672

RESUMEN

Plants continuously generate new tissues and organs throughout their life cycle, due to the activity of populations of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM) generates all the aboveground organs of the plant, including leaves and flowers, and plays a key role in plant survival and reproduction. Organ production at the SAM occurs following precise spatio-temporal patterns known as phyllotaxis. Because of the regularity of these patterns, phyllotaxis has been the subject of investigations from biologists, physicists, and mathematicians for several centuries. Both experimental and theoretical works have led to the idea that phyllotaxis results from a self-organizing process in the meristem via long-distance interactions between organs. In recent years, the phytohormone auxin has emerged not only as the central regulator of organogenesis at the SAM, but also as a major determinant of the self-organizing properties of phyllotaxis. Here, we discuss both the experimental and theoretical evidence for the implication of auxin in the control of organogenesis and self-organization of the SAM. We highlight how several layers of control acting at different scales contribute together to the function of the auxin signal in SAM dynamics. We also indicate a role for mechanical forces in the development of the SAM, supported by recent interdisciplinary studies.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/metabolismo , Transporte Biológico , Retroalimentación Fisiológica , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Transducción de Señal
13.
Development ; 140(10): 2118-29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23578926

RESUMEN

The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Meristema/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Genes de Plantas , Genoma de Planta , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Ácidos Indolacéticos/metabolismo , Leucina Zippers/genética , Meristema/crecimiento & desarrollo , Modelos Genéticos , Mutación , Fenotipo , Fenómenos Fisiológicos de las Plantas , Brotes de la Planta/metabolismo
14.
Plant Signal Behav ; 8(3): e23355, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23333970

RESUMEN

By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport.


Asunto(s)
Arabidopsis/metabolismo , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Luz , Desarrollo de la Planta , Arabidopsis/fisiología , Transporte Biológico , Transducción de Señal
15.
Development ; 139(18): 3402-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22912415

RESUMEN

When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/genética , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/genética , Brotes de la Planta/efectos de la radiación , Ubiquitina-Proteína Ligasas
16.
Plant Signal Behav ; 3(2): 137-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19704735

RESUMEN

A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future.

17.
Genes Dev ; 21(15): 1863-8, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17671088

RESUMEN

A plant grown under canopies perceives the reduction in the ratio of red (R) to far-red (FR) light as a warning of competition, and enhances elongation growth in an attempt to overgrow its neighbors. Here, we report that the same low R/FR signal that induces hypocotyl elongation also triggers a rapid arrest of leaf primordium growth, ensuring that plant resources are redirected into extension growth. The growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in incipient vein cells of developing primordia, thus demonstrating the existence of a previously unrecognized regulatory circuit underlying plant response to canopy shade.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxidorreductasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Glucuronidasa/genética , Oxidorreductasas/genética , Fotobiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Transducción de Señal
18.
Genes Dev ; 19(23): 2811-5, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16322556

RESUMEN

Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/fisiología , Proteínas de Unión al ADN/fisiología , Ecosistema , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/fisiología , Fitocromo/fisiología , Transducción de Señal , Factores de Transcripción/fisiología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA