Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 824084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602036

RESUMEN

Soil naturally comprises heavy metals but due to the rapid industrialization and anthropogenic events such as uncontrolled use of agrochemicals their concentration is heightened up to a large extent across the world. Heavy metals are non-biodegradable and persistent in nature thereby disrupting the environment and causing huge health threats to humans. Exploiting microorganisms for the removal of heavy metal is a promising approach to combat these adverse consequences. The microbial remediation is very crucial to prevent the leaching of heavy metal or mobilization into the ecosystem, as well as to make heavy metal extraction simpler. In this scenario, technological breakthroughs in microbes-based heavy metals have pushed bioremediation as a promising alternative to standard approaches. So, to counteract the deleterious effects of these toxic metals, some microorganisms have evolved different mechanisms of detoxification. This review aims to scrutinize the routes that are responsible for the heavy metal(loid)s contamination of agricultural land, provides a vital assessment of microorganism bioremediation capability. We have summarized various processes of heavy metal bioremediation, such as biosorption, bioleaching, biomineralization, biotransformation, and intracellular accumulation, as well as the use of genetically modified microbes and immobilized microbial cells for heavy metal removal.

2.
Front Plant Sci ; 13: 875494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463415

RESUMEN

Plants and rhizobacteria are coexisting since the beginning, but the exact mechanism of communication between them remains enigmatic. The PsoR protein of plant-beneficial Pseudomonas spp., a group of root-associated bacteria, is known to produce a range of antifungal and insecticidal secondary metabolites like 2,4-diacetyl phloroglucinol (DAPG), pyrrolnitrin, and chitinase making them great biocontrol agents and thus helping in plant growth promotion. To better understand the inter-kingdom signaling between plants and plant growth-promoting rhizobacteria (PGPR), the interaction of PsoR with various root exudates was investigated computationally. For this, we first modeled the PsoR protein and confirmed it using the Ramachandran plot. A total of 59 different low molecular weight phytochemicals, secreted as root exudates by plants, were identified by extensive text mining. They were virtually screened with the PsoR protein by molecular docking. Based on the lowest binding energy, ranging from -7.1 to -6.3 kcal mol-1, the top five exudates were chosen. To analyze the stability of the docked protein-ligand complex, a molecular dynamics (MD) simulation of 100 nanoseconds was done. Two root exudates, saponarin and 2-benzoxazolinone (BOA), showed suitable binding with PsoR by forming hydrogen, hydrophobic, and Van der Waals interactions. To confirm the MD simulation results, RMSF, RG, SASA, and interaction energy were calculated. This computational study first time reports that saponarin and 2-BOA, predominantly present in the root exudates of barley and wheat, respectively, demonstrate effective binding with the modeled PsoR protein and are likely of showing cross-kingdom interactions.

3.
J Biomol Struct Dyn ; 40(23): 12461-12471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34459700

RESUMEN

Dyes are being increasingly utilized across the globe, but there is no appropriate method of bioremediation for their full mineralization from the environment. Laccases are key enzymes that help microbes to degrade dyes as well as their intermediate metabolites. Various dyes have been reported to be degraded by bacteria, but it is still unclear how these enzymes function during dye degradation. To effectively eradicate toxic dyes from the system, it is essential to understand the molecular function of enzymes. As a result, the interaction of laccase with different toxic dyes was investigated using molecular docking. Based on the highest binding energy we have screened ten dyes with positive interaction with laccase. Evaluating the MD simulation results, three out of ten dyes were more stable as potential targets for degradation by laccase of Bacillus subtilis. As a result, subsequent research focused solely on the results of three substrates: pigment red, fuchsin base, and Sudan IV. Analysis of MD simulation revealed that pigments red 23, fuchsin base, and Sudan IV form hydrogen and hydrophobic bond as well as Vander Waals interactions with the active site of laccase to keep it stable in aqueous solution. The conformation of laccase is greatly altered by the inclusion of all three substrates in the active site. The MD simulation findings show that laccase complexes remain stable throughout the catalytic reaction. Therefore, this research provides a molecular understanding of laccase expression and its role in the bioremediation of the pigments red 23, fuchsin base, and Sudan IV.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Colorantes , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Colorantes/química , Colorantes de Rosanilina , Lacasa/química , Lacasa/metabolismo , Biodegradación Ambiental
4.
Life Sci ; 256: 117956, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32535078

RESUMEN

The 2019-novel coronavirus disease (COVID-19) is caused by SARS-CoV-2 is transmitted from human to human has recently reported in China. Now COVID-19 has been spread all over the world and declared epidemics by WHO. It has caused a Public Health Emergency of International Concern. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Due to the rapid increase of SARS-CoV-2 infections and unavailability of antiviral therapeutic agents, developing an effective SAR-CoV-2 vaccine is urgently required. SARS-CoV-2 which is genetically similar to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) is an enveloped, single and positive-stranded RNA virus with a genome comprising 29,891 nucleotides, which encode the 12 putative open reading frames responsible for the synthesis of viral structural and nonstructural proteins which are very similar to SARS-CoV and MERS-CoV proteins. In this review we have summarized various vaccine candidates i.e., nucleotide, subunit and vector based as well as attenuated and inactivated forms, which have already been demonstrated their prophylactic efficacy against MERS-CoV and SARS-CoV, so these candidates could be used as a potential tool for the development of a safe and effective vaccine against SARS-CoV-2.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/administración & dosificación , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...