Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Neuroinflammation ; 17(1): 296, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036616

RESUMEN

BACKGROUND: Chronic alcohol consumption is associated with neuroinflammation, neuronal damage, and behavioral alterations including addiction. Alcohol-induced neuroinflammation is characterized by increased expression of proinflammatory cytokines (including TNFα, IL-1ß, and CCL2) and microglial activation. We hypothesized chronic alcohol consumption results in peripheral immune cell infiltration to the CNS. Since chemotaxis through the CCL2-CCR2 signaling axis is critical for macrophage recruitment peripherally and centrally, we further hypothesized that blockade of CCL2 signaling using the dual CCR2/5 inhibitor cenicriviroc (CVC) would prevent alcohol-induced CNS infiltration of peripheral macrophages and alter the neuroinflammatory state in the brain after chronic alcohol consumption. METHODS: C57BL/6J female mice were fed an isocaloric or 5% (v/v) ethanol Lieber DeCarli diet for 6 weeks. Some mice received daily injections of CVC. Microglia and infiltrating macrophages were characterized and quantified by flow cytometry and visualized using CX3CR1eGFP/+ CCR2RFP/+ reporter mice. The effect of ethanol and CVC treatment on the expression of inflammatory genes was evaluated in various regions of the brain, using a Nanostring nCounter inflammation panel. Microglia activation was analyzed by immunofluorescence. CVC-treated and untreated mice were presented with the two-bottle choice test. RESULTS: Chronic alcohol consumption induced microglia activation and peripheral macrophage infiltration in the CNS, particularly in the hippocampus. Treatment with CVC abrogated ethanol-induced recruitment of peripheral macrophages and partially reversed microglia activation. Furthermore, the expression of proinflammatory markers was upregulated by chronic alcohol consumption in various regions of the brain, including the cortex, hippocampus, and cerebellum. Inhibition of CCR2/5 decreased alcohol-mediated expression of inflammatory markers. Finally, microglia function was impaired by chronic alcohol consumption and restored by CVC treatment. CVC treatment did not change the ethanol consumption or preference of mice in the two-bottle choice test. CONCLUSIONS: Together, our data establish that chronic alcohol consumption promotes the recruitment of peripheral macrophages into the CNS and microglia alterations through the CCR2/5 axis. Therefore, further exploration of the CCR2/5 axis as a modulator of neuroinflammation may offer a potential therapeutic approach for the treatment of alcohol-associated neuroinflammation.


Asunto(s)
Encéfalo/metabolismo , Etanol/toxicidad , Macrófagos/metabolismo , Microglía/metabolismo , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Animales , Encéfalo/efectos de los fármacos , Antagonistas de los Receptores CCR5/farmacología , Etanol/administración & dosificación , Femenino , Imidazoles/farmacología , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Receptores CCR2/antagonistas & inhibidores , Sulfóxidos/farmacología
3.
Hepatology ; 69(2): 545-563, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30102772

RESUMEN

Inflammatory cell activation drives diverse cellular programming during hepatic diseases. Hypoxia-inducible factors (HIFs) have recently been identified as important regulators of immunity and inflammation. In nonalcoholic steatohepatitis (NASH), HIF-1α is upregulated in hepatocytes, where it induces steatosis; however, the role of HIF-1α in macrophages under metabolic stress has not been explored. In this study, we found increased HIF-1α levels in hepatic macrophages in methionine-choline-deficient (MCD) diet-fed mice and in macrophages of patients with NASH compared with controls. The HIF-1α increase was concomitant with elevated levels of autophagy markers BNIP3, Beclin-1, LC3-II, and p62 in both mouse and human macrophages. LysMCre HIFdPA fl/fl mice, which have HIF-1α levels stabilized in macrophages, showed higher steatosis and liver inflammation compared with HIFdPA fl/fl mice on MCD diet. In vitro and ex vivo experiments reveal that saturated fatty acid, palmitic acid (PA), both induces HIF-1α and impairs autophagic flux in macrophages. Using small interfering RNA-mediated knock-down and overexpression of HIF-1α in macrophages, we demonstrated that PA impairs autophagy via HIF-1α. We found that HIF-1α mediates NF-κB activation and MCP-1 production and that HIF-1α-mediated impairment of macrophage autophagy increases IL-1ß production, contributing to MCD diet-induced NASH. Conclusion: Palmitic acid impairs autophagy via HIF-1α activation in macrophages. HIF-1α and impaired autophagy are present in NASH in vivo in mouse macrophages and in human blood monocytes. We identified that HIF-1α activation and decreased autophagic flux stimulate inflammation in macrophages through upregulation of NF-κB activation. These results suggest that macrophage activation in NASH involves a complex interplay between HIF-1α and autophagy as these pathways promote proinflammatory overactivation in MCD diet-induced NASH.


Asunto(s)
Autofagia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Estudios de Casos y Controles , Femenino , Masculino , Ratones Endogámicos C57BL , Monocitos/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Palmítico
4.
J Neuroinflammation ; 15(1): 298, 2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30368255

RESUMEN

BACKGROUND: The end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS). In the intestine, alcohol use changes the microbiome composition and increases gut permeability allowing translocation of microbial components into the circulation. Gut-derived pathogen-associated signals initiate inflammatory responses in the liver and possibly elsewhere in the body. Because previous studies showed that the gut microbiome contributes to alcohol-induced liver disease, we hypothesized that antibiotic administration to reduce the gut microbiome would attenuate alcohol-induced inflammation in the brain and small intestine (SI). METHODS: Six- to 8-week-old C57BL/6J female mice were fed alcohol in a liquid diet or a calorie-matched control diet for 10 days with an acute alcohol binge or sugar on the final day (acute-on-chronic alcohol administration). Some mice were treated with oral antibiotics daily to diminish the gut microbiome. We compared serum levels of TNFα, IL-6, and IL-1ß by ELISA; expression of cytokines Tnfα, Mcp1, Hmgb1, Il-17, Il-23, Il-6, and Cox2; and inflammasome components Il-1ß, Il-18, Casp1, Asc, and Nlrp3 in the CNS and SI by qRT-PCR. Microglial morphology was analyzed using immunohistochemical IBA1 staining in the cortex and hippocampus. RESULTS: Antibiotics dramatically reduced the gut microbiome load in both alcohol- and pair-fed mice. Alcohol-induced neuroinflammation and increase in SI cytokine expression were attenuated in mice with antibiotic treatment. Acute-on-chronic alcohol did not induce serum TNFα, IL-6, and IL-1ß. Alcohol feeding significantly increased the expression of proinflammatory cytokines such as Tnfα, Mcp1, Hmgb1, Il-17, and Il-23 in the brain and intestine. Reduction in the gut bacterial load, as a result of antibiotic treatment, attenuated the expression of all of these alcohol-induced proinflammatory cytokines in both the brain and SI. Alcohol feeding resulted in microglia activation and morphologic changes in the cortex and hippocampus characterized by a reactive phenotype. These alcohol-induced changes were abrogated following an antibiotic-induced reduction in the gut microbiome. Unexpectedly, antibiotic treatment increased the mRNA expression of some inflammasome components in both the brain and intestine. CONCLUSIONS: Our data show for the first time that the acute-on-chronic alcohol administration in mice induces both neuroinflammation and intestinal inflammation and that reduction in the intestinal bacterial load can attenuate alcohol-associated CNS and gut inflammation. Gut microbiome-derived signals contribute to neuroinflammation in acute-on-chronic alcohol exposure.


Asunto(s)
Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/toxicidad , Citocinas/sangre , Encefalitis/inducido químicamente , Etanol/toxicidad , Inflamasomas/metabolismo , Animales , Antibacterianos/uso terapéutico , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Femenino , Microbioma Gastrointestinal , Inflamasomas/genética , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Factores de Tiempo
5.
Gastroenterology ; 154(8): 2277-2278, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750907
6.
Gastroenterology ; 154(1): 238-252.e7, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987423

RESUMEN

BACKGROUND & AIMS: Chronic, excessive alcohol consumption leads to alcoholic liver disease (ALD) characterized by steatosis, inflammation, and eventually cirrhosis. The hepatocyte specific microRNA 122 (MIR122) regulates hepatocyte differentiation and metabolism. We investigated whether an alcohol-induced decrease in level of MIR122 contributes to development of ALD. METHODS: We obtained liver samples from 12 patients with ALD and cirrhosis and 9 healthy individuals (controls) and analyzed them by histology and immunohistochemistry. C57Bl/6 mice were placed on a Lieber-DeCarli liquid diet, in which they were fed ethanol for 8 weeks, as a model of ALD, or a control diet. These mice were also given injections of CCl4, to increase liver fibrosis, for 8 weeks. On day 28, mice with ethanol-induced liver disease and advanced fibrosis, and controls, were given injections of recombinant adeno-associated virus 8 vector that expressed the primary miR-122 transcript (pri-MIR122, to overexpress MIR122 in hepatocytes) or vector (control). Two weeks before ethanol feeding, some mice were given injections of a vector that expressed an anti-MIR122, to knock down its expression. Serum and liver tissues were collected; hepatocytes and liver mononuclear cells were analyzed by histology, immunoblots, and confocal microscopy. We performed in silico analyses to identify targets of MIR122 and chromatin immunoprecipitation quantitative polymerase chain reaction analyses in Huh-7 cells. RESULTS: Levels of MIR122 were decreased in liver samples from patients with ALD and mice on the Lieber-DeCarli diet, compared with controls. Transgenic expression of MIR122 in hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis significantly reduced serum levels of alanine aminotransferase (ALT) and liver steatosis and fibrosis, compared with mice given injections of the control vector. Ethanol feeding reduced expression of pri-MIR122 by increasing expression of the spliced form of the transcription factor grainyhead like transcription factor 2 (GRHL2) in liver tissues from mice. Levels of GRHL2 also were increased in liver tissues from patients with ALD, compared with controls; increases correlated with decreases in levels of MIR122 in human liver. Mice given injections of the anti-MIR122 before ethanol feeding had increased steatosis, inflammation, and serum levels of alanine aminotransferase compared with mice given a control vector. Levels of hypoxia-inducible factor 1 alpha (HIF1α) mRNA, a target of MIR122, were increased in liver tissues from patients and mice with ALD, compared with controls. Mice with hepatocyte-specific disruption of Hif1α developed less-severe liver injury following administration of ethanol, injection of anti-MIR122, or both. CONCLUSIONS: Levels of MIR122 decrease in livers from patients with ALD and mice with ethanol-induced liver disease, compared with controls. Transcription of MIR122 is inhibited by GRHL2, which is increased in livers of mice and patients with ALD. Expression of an anti-MIR122 worsened the severity of liver damage following ethanol feeding in mice. MIR122 appears to protect the liver from ethanol-induced damage by reducing levels of HIF1α. These processes might be manipulated to reduce the severity of ALD in patients.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/prevención & control , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Persona de Mediana Edad
7.
Hepatology ; 67(5): 1986-2000, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29251792

RESUMEN

A salient feature of alcoholic liver disease (ALD) is Kupffer cell (KC) activation and recruitment of inflammatory monocytes and macrophages (MØs). These key cellular events of ALD pathogenesis may be mediated by extracellular vesicles (EVs). EVs transfer biomaterials, including proteins and microRNAs, and have recently emerged as important effectors of intercellular communication. We hypothesized that circulating EVs from mice with ALD have a protein cargo characteristic of the disease and mediate biological effects by activating immune cells. The total number of circulating EVs was increased in mice with ALD compared to pair-fed controls. Mass spectrometric analysis of circulating EVs revealed a distinct signature for proteins involved in inflammatory responses, cellular development, and cellular movement between ALD EVs and control EVs. We also identified uniquely important proteins in ALD EVs that were not present in control EVs. When ALD EVs were injected intravenously into alcohol-naive mice, we found evidence of uptake of ALD EVs in recipient livers in hepatocytes and MØs. Hepatocytes isolated from mice after transfer of ALD EVs, but not control EVs, showed increased monocyte chemoattractant protein 1 mRNA and protein expression, suggesting a biological effect of ALD EVs. Compared to control EV recipient mice, ALD EV recipient mice had increased numbers of F4/80hi cluster of differentiation 11b (CD11b)lo KCs and increased percentages of tumor necrosis factor alpha-positive/interleukin 12/23-positive (inflammatory/M1) KCs and infiltrating monocytes (F4/80int CD11bhi ), while the percentage of CD206+ CD163+ (anti-inflammatory/M2) KCs was decreased. In vitro, ALD EVs increased tumor necrosis factor alpha and interleukin-1ß production in MØs and reduced CD163 and CD206 expression. We identified heat shock protein 90 in ALD EVs as the mediator of ALD-EV-induced MØ activation. CONCLUSION: Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000).


Asunto(s)
Vesículas Extracelulares/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Hepatopatías Alcohólicas/metabolismo , Macrófagos/metabolismo , Animales , Citocinas/metabolismo , Femenino , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos/genética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL
9.
PLoS One ; 12(3): e0174544, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28350851

RESUMEN

BACKGROUND: Alcohol-induced intestinal dysbiosis disrupts homeostatic gut-liver axis function and is essential in the development of alcoholic liver disease. Here, we investigate changes in enteric microbiome composition in a model of early alcoholic steatohepatitis and dissect the pathogenic role of intestinal microbes in alcohol-induced liver pathology. MATERIALS AND METHODS: Wild type mice received a 10-day diet that was either 5% alcohol-containing or an isocaloric control diet plus a single binge. 16S rDNA sequencing defined the bacterial communities in the cecum of alcohol- and pair-fed animals. Some mice were treated with an antibiotic cocktail prior to and throughout alcohol feeding. Liver neutrophils, cytokines and steatosis were evaluated. RESULTS: Acute-on-chronic alcohol administration induced shifts in various bacterial phyla in the cecum, including increased Actinobacteria and a reduction in Verrucomicrobia driven entirely by a reduction in the genus Akkermansia. Antibiotic treatment reduced the gut bacterial load and circulating bacterial wall component lipopolysaccharide (LPS). We found that bacterial load suppression prevented alcohol-related increases in the number of myeloperoxidase- (MPO) positive infiltrating neutrophils in the liver. Expression of liver mRNA tumor necrosis factor alpha (Tnfα), C-X-C motif chemokine ligand 1 (Cxcl1) and circulating protein monocyte chemoattractant protein-1 (MCP-1) were also reduced in antibiotic-treated alcohol-fed mice. Alcohol-induced hepatic steatosis measured by Oil-Red O staining was significantly reduced in antibiotic treated mice. Genes regulating lipid production and storage were also altered by alcohol and antibiotic treatment. Interestingly, antibiotic treatment did not protect from alcohol-induced increases in serum aminotransferases (ALT/AST). CONCLUSIONS: Our data indicate that acute-on-chronic alcohol feeding alters the microflora at multiple taxonomic levels and identifies loss of Akkermansia as an early marker of alcohol-induced gut dysbiosis. We conclude that gut microbes influence liver inflammation, neutrophil infiltration and liver steatosis following alcohol consumption and these data further emphasize the role of the gut-liver axis in early alcoholic liver disease.


Asunto(s)
Hígado Graso/genética , Microbioma Gastrointestinal/genética , Hepatitis Alcohólica/genética , Inflamación/genética , Infiltración Neutrófila/genética , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/toxicidad , Etanol/administración & dosificación , Etanol/toxicidad , Hígado Graso/inducido químicamente , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/genética , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hepatitis Alcohólica/etiología , Inflamación/inducido químicamente , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Oncoimmunology ; 5(10): e1221557, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853646

RESUMEN

Obesity-related inflammation promotes cancer development. Tissue resident macrophages affect tumor progression and the tumor micro-environment favors polarization into alternatively activated macrophages (M2) that facilitate tumor invasiveness. Here, we dissected the role of western diet-induced NASH in inducing macrophage polarization in a carcinogen initiated model of hepatocellular carcinoma (HCC). Adult C57BL/6 male mice received diethyl nitrosamine (DEN) followed by 24 weeks of high fat-high cholesterol-high sugar diet (HF-HC-HSD). We assessed liver MRI and histology, serum ALT, AFP, liver triglycerides, and cytokines. Macrophage polarization was determined by IL-12/TNFα (M1) and CD163/CD206 (M2) expression using flow cytometry. Role of hif-1α-induced IL-10 was dissected in hepatocyte specific hif-1αKO and hif-1αdPA (over-expression) mice. The western diet-induced features of NASH and accelerated HCC development after carcinogen exposure. Liver fibrosis and serum AFP were significantly increased in DEN + HF-HC-HSD mice compared to controls. Western diet resulted in macrophage (F4/80+CD11b+) infiltration to liver and DEN + HF-HC-HSD mice showed preferential increase in M2 macrophages. Isolated hepatocytes from western diet fed mice showed significant upregulation of the hypoxia-inducible transcription factor, hif-1α, and livers from hif-1α over-expressing mice had increased proportion of M2 macrophages. Primary hepatocytes from wild-type mice treated with DEN and palmitic acid in vitro showed activation of hif-1α and induction of IL-10, a M2 polarizing cytokine. IL-10 neutralization in hepatocyte-derived culture supernatant prevented M2 macrophage polarization and silencing hif-1α in macrophages blocked their M2 polarization. Therefore, our data demonstrate that NASH accelerates HCC progression via upregulation of hif-1α mediated IL-10 polarizing M2 macrophages.

11.
J Biol Chem ; 291(52): 26794-26805, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27810900

RESUMEN

Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/Interleukin-1R (TIR) domain-containing adapter-inducing interferon-ß (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4 Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4 In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors, TRAM or TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the pro-apoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Estrés del Retículo Endoplásmico , Hepatocitos/patología , Factor 3 Regulador del Interferón/fisiología , Cirrosis Hepática/etiología , Proteínas de la Membrana/fisiología , Receptor de Interferón alfa y beta/fisiología , Animales , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Femenino , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
12.
Hepatology ; 64(4): 1057-71, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27302565

RESUMEN

UNLABELLED: The spectrum of alcoholic liver disease (ALD) is a major cause of mortality with limited therapies available. Because alcohol targets numerous signaling pathways in hepatocytes and in immune cells, the identification of a master regulatory target that modulates multiple signaling processes is attractive. In this report, we assessed the role of spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, which has a central modulatory role in multiple proinflammatory signaling pathways involved in the pathomechanism of ALD. Using mouse disease models that represent various phases in the progression of human ALD, we found that alcohol, in all of these models, induced SYK activation in the liver, both in hepatocytes and liver mononuclear cells. Furthermore, significant SYK activation also occurred in liver samples and peripheral blood mononuclear cells of patients with ALD/alcoholic hepatitis compared to controls. Functional inhibition of SYK activation in vivo abrogated alcohol-induced hepatic neutrophil infiltration, resident immune cell activation, as well as inflammasome and extracellular signal-regulated kinase 1 and 2-mediated nuclear factor kappa B activation in mice. Strikingly, inhibition of SYK activation diminished alcohol-induced hepatic steatosis and interferon regulatory factor 3-mediated apoptosis. CONCLUSION: Our data demonstrate a novel, functional, and multicellular role for SYK phosphorylation in modulating immune cell-driven liver inflammation, hepatocyte cell death, and steatosis at different stages of ALD. These novel findings highlight SYK as a potential multifunctional target in the treatment of alcoholic steatohepatitis. (Hepatology 2016;64:1057-1071).


Asunto(s)
Muerte Celular , Hígado Graso/prevención & control , Hepatocitos/patología , Inflamación/prevención & control , Hepatopatías Alcohólicas/enzimología , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Quinasa Syk/antagonistas & inhibidores , Animales , Hígado Graso/etiología , Femenino , Humanos , Inflamación/etiología , Hepatopatías Alcohólicas/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
13.
World J Gastroenterol ; 22(16): 4091-108, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27122661

RESUMEN

AIM: To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS: Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1ß/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS: Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION: We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC.


Asunto(s)
Carcinoma Hepatocelular/etiología , Hígado Graso Alcohólico/complicaciones , Cirrosis Hepática Alcohólica/complicaciones , Neoplasias Hepáticas Experimentales/etiología , Alanina Transaminasa/sangre , Animales , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Proliferación Celular , Citocromo P-450 CYP2E1/metabolismo , Dietilnitrosamina , Endotoxinas/sangre , Etanol , Hígado Graso Alcohólico/sangre , Hígado Graso Alcohólico/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Inmunohistoquímica , Cirrosis Hepática Alcohólica/sangre , Cirrosis Hepática Alcohólica/patología , Neoplasias Hepáticas Experimentales/sangre , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/patología , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/patología , Fenotipo , Factores de Tiempo , alfa-Fetoproteínas/metabolismo
14.
Sci Rep ; 6: 21340, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888602

RESUMEN

Alcohol-related hepatocellular carcinoma (HCC) develops with advanced alcoholic liver disease and liver fibrosis. Using adult mice, we evaluate the effect of alcoholic steatohepatitis on early hepatobiliary carcinoma after initiation by diethyl-nitrosamine (DEN). Here we show that alcohol-fed DEN-injected mice have higher ALT and liver-to-body weight ratio compared to pair-fed DEN-injected mice. Alcohol feeding results in steatohepatitis indicated by increased pro-inflammatory cytokines and fibrotic genes. MRI and liver histology of alcohol+DEN mice shows hepatobiliary cysts, early hepatic neoplasia and increase in serum alpha-fetoprotein. Proliferation makers (BrdU, cyclin D1, p53) and cancer stem cell markers (CD133 and nanog) are significantly up-regulated in livers of alcohol-fed DEN-injected mice compared to controls. In livers with tumors, loss of miR-122 expression with a significant up-regulation of miR-122 target HIF-1α is seen. We conclude that alcoholic steatohepatitis accelerates hepatobiliary tumors with characteristic molecular features of HCC by up-regulating inflammation, cell proliferation, stemness, and miR-122 loss.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Hepatitis Alcohólica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Neoplasias Hepáticas Experimentales/metabolismo , MicroARNs/biosíntesis , Proteínas de Neoplasias/biosíntesis , ARN Neoplásico/biosíntesis , Regulación hacia Arriba , Animales , Dietilaminas/toxicidad , Etanol/toxicidad , Hepatitis Alcohólica/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones
15.
J Hepatol ; 64(6): 1378-87, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26867493

RESUMEN

BACKGROUND & AIMS: Alcoholic liver disease (ALD) ranges from fatty liver to inflammation and cirrhosis. miRNA-155 is an important regulator of inflammation. In this study, we describe the in vivo role of miR-155 in ALD. METHODS: Wild-type (WT) (C57/BL6J) or miR-155 knockout (KO) and TLR4 KO mice received Lieber DeCarli diet for 5weeks. Some mice received corn oil or CCl4 for 2 or 9weeks. RESULTS: We found that miR-155 KO mice are protected from alcohol-induced steatosis and inflammation. The reduction in alcohol-induced fat accumulation in miR-155 KO mice was associated with increased peroxisome proliferator-activated receptor response element (PPRE) and peroxisome proliferator-activated receptors (PPAR)α (miR-155 target) binding and decreased MCP1 production. Treatment with a miR-155 inhibitor increased PPARγ expression in naïve and alcohol treated RAW macrophages. Alcohol increased lipid metabolism gene expression (FABP4, LXRα, ACC1 and LDLR) in WT mice and this was prevented in KO mice. Alcohol diet caused an increase in the number of CD163(+) CD206(+) infiltrating macrophages and neutrophils in WT mice, which was prevented in miR-155 KO mice. Kupffer cells isolated from miR-155 KO mice exhibited predominance of M2 phenotype when exposed to M1 polarized signals and this was due to increased C/EBPß. Pro-fibrotic genes were attenuated in miR-155 KO mice after alcohol diet or CCl4 treatment. Compared to WT mice, attenuation in CCl4 induced hydroxyproline and α-SMA was observed in KO mice. Finally, we show TLR4 signaling regulates miR-155 as TLR4 KO mice showed no induction of miR-155 after alcohol diet. CONCLUSIONS: Collectively our results demonstrated the role of miR-155 in alcohol-induced steatohepatitis and fibrosis in vivo.


Asunto(s)
Hígado Graso Alcohólico/etiología , Cirrosis Hepática Experimental/etiología , MicroARNs/fisiología , Animales , Tetracloruro de Carbono , ADN/metabolismo , Femenino , Interferón gamma/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/metabolismo , Elementos de Respuesta , Receptor Toll-Like 4/fisiología
16.
J Transl Med ; 13: 261, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26264599

RESUMEN

BACKGROUND: It has been well documented that alcohol and its metabolites induce injury and inflammation in the liver. However, there is no potential biomarker to monitor the extent of liver injury in alcoholic hepatitis patients. MicroRNAs (miRNAs) are a class of non-coding RNAs that are involved in various physiologic and pathologic processes. In the circulation, a great proportion of miRNAs is associated with extracellular vesicles (EVs)/exosomes. Here, we hypothesized that the exosome-associated miRNAs can be used as potential biomarkers in alcoholic hepatitis (AH). METHODS: Exosomes were isolated from sera of alcohol-fed mice or pair-fed mice, and plasma of alcoholic hepatitis patients or healthy controls by ExoQuick. The exosomes were characterized by transmission electron microscopy and Western blot and enumerated with a Nanoparticle Tracking Analysis system. Firefly™ microRNA Assay was performed on miRNA extracted from mice sera. TaqMan microRNA assay was used to identify differentially expressed miRNAs in plasma of cohort of patients with AH versus controls followed by construction of receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of the candidates. RESULTS: The total number of circulating EVs was significantly increased in mice after alcohol feeding. Those EVs mainly consisted of exosomes, the smaller size vesicle subpopulation of EVs. By performing microarray screening on exosomes, we found nine inflammatory miRNAs which were deregulated in sera of chronic alcohol-fed mice compared to controls including upregulated miRNAs: miRNA-192, miRNA-122, miRNA-30a, miRNA-744, miRNA-1246, miRNA 30b and miRNA-130a. The ROC analyses indicated excellent diagnostic value of miRNA-192, miRNA-122, and miRNA-30a to identify alcohol-induced liver injury. We further validated findings from our animal model in human samples. Consistent with the animal model, total number of EVs, mostly exosomes, was significantly increased in human subjects with AH. Both miRNA-192 and miRNA-30a were significantly increased in the circulation of subjects with AH. miRNA-192 showed promising value for the diagnosis of AH. CONCLUSION: Elevated level of EVs/exosomes and exosome-associated miRNA signature could serve as potential diagnostic markers for AH. In addition to the biomarker diagnostic capabilities, these findings may facilitate development of novel strategies for diagnostics, monitoring, and therapeutics of AH.


Asunto(s)
Exosomas/metabolismo , Hepatitis Alcohólica/sangre , Hepatitis Alcohólica/genética , MicroARNs/sangre , Alanina Transaminasa/metabolismo , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Etanol , Exosomas/genética , Exosomas/ultraestructura , Conducta Alimentaria , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , MicroARNs/genética , Estabilidad del ARN/genética , Curva ROC , Programas Informáticos
17.
J Hepatol ; 63(5): 1147-55, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26100496

RESUMEN

BACKGROUND & AIMS: The inflammasome is a well-characterized inducer of inflammation in alcoholic steatohepatitis (ASH). Inflammasome activation requires two signals for mature interleukin (IL)-1ß production. Here we asked whether metabolic danger signals trigger inflammasome activation in ASH. METHODS: Wild-type mice, ATP receptor 2x7 (P2rx7)-KO mice, or mice overexpressing uricase were fed Lieber-DeCarli ethanol or control diet. We also implemented a pharmacological approach in which mice were treated with probenecid or allopurinol. RESULTS: The sterile danger signals, ATP and uric acid, were increased in the serum and liver of alcohol-fed mice. Depletion of uric acid or ATP, or lack of ATP signaling attenuated ASH and prevented inflammasome activation and its major downstream cytokine, IL-1ß. Pharmacological depletion of uric acid with allopurinol provided significant protection from alcohol-induced inflammatory response, steatosis and liver damage, and additional protection was achieved in mice treated with probenecid, which depletes uric acid and blocks ATP-induced P2rx7 signaling. We found that alcohol-damaged hepatocytes released uric acid and ATP in vivo and in vitro and that these sterile danger signals activated the inflammasome in LPS-exposed liver mononuclear cells. CONCLUSIONS: Our data indicate that the second signal in inflammasome activation and IL-1ß production in ASH results from the endogenous danger signals, uric acid and ATP. Inhibition of signaling triggered by uric acid and ATP may have therapeutic implications in ASH.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Alopurinol/uso terapéutico , Hígado Graso Alcohólico/metabolismo , Hepatocitos/metabolismo , Inflamasomas/metabolismo , Probenecid/uso terapéutico , Ácido Úrico/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Adyuvantes Farmacéuticos/uso terapéutico , Animales , Antimetabolitos/uso terapéutico , Células Cultivadas , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/patología , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Transducción de Señal , Ácido Úrico/metabolismo
18.
Sci Rep ; 5: 10721, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26024046

RESUMEN

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 deficient mice augmented their LPS-induced MCP1 mRNA increase. The systemic delivery of wild type plasma to miR-155 KO mice also resulted in a rapid accumulation of miR-155 in the circulation and distribution to the liver and adipose tissue. In summary, our results demonstrate tissue biodistribution and biologic function of EV-associated miR-155.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Espacio Extracelular/metabolismo , Macrófagos del Hígado/metabolismo , Ratones , Ratones Noqueados , MicroARNs/sangre , Distribución Tisular
19.
J Leukoc Biol ; 98(2): 249-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934928

RESUMEN

Inflammation defines the progression of ALD from reversible to advanced stages. Translocation of bacterial LPS to the liver from the gut is necessary for alcohol-induced liver inflammation. However, it is not known whether endogenous, metabolic danger signals are required for inflammation in ALD. Uric acid and ATP, 2 major proinflammatory danger signals, were evaluated in the serum of human volunteers exposed to a single dose of ethanol or in supernatants of primary human hepatocytes exposed to ethanol. In vitro studies were used to evaluate the role of uric acid and ATP in inflammatory cross-talk between hepatocytes and immune cells. The significance of signaling downstream of uric acid and ATP in the liver was evaluated in NLRP3-deficient mice fed a Lieber-DeCarli ethanol diet. Exposure of healthy human volunteers to a single dose of ethanol resulted in increased serum levels of uric acid and ATP. In vitro, we identified hepatocytes as a significant source of these endogenous inflammatory signals. Uric acid and ATP mediated a paracrine inflammatory cross-talk between damaged hepatocytes and immune cells and significantly increased the expression of LPS-inducible cytokines, IL-1ß and TNF-α, by immune cells. Deficiency of NLRP3, a ligand-sensing component of the inflammasome recognizing uric acid and ATP, prevented the development of alcohol-induced liver inflammation in mice and significantly ameliorated liver damage and steatosis. Endogenous metabolic danger signals, uric acid, and ATP are involved in inflammatory cross-talk between hepatocytes and immune cells and play a crucial role in alcohol-induced liver inflammation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hepatocitos/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Ácido Úrico/metabolismo , Adenosina Trifosfato/farmacología , Adulto , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Comunicación Celular/inmunología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Femenino , Eliminación de Gen , Expresión Génica , Hepatocitos/inmunología , Hepatocitos/patología , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Lipopolisacáridos/farmacología , Hígado/inmunología , Hígado/patología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/inmunología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR , Cultivo Primario de Células , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Ácido Úrico/farmacología
20.
Semin Liver Dis ; 35(1): 36-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25632933

RESUMEN

Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.


Asunto(s)
Carcinoma Hepatocelular/genética , Hepatitis C Crónica/genética , Cirrosis Hepática Alcohólica/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/metabolismo , Hepatocitos/metabolismo , Humanos , Macrófagos del Hígado/metabolismo , Cirrosis Hepática Alcohólica/complicaciones , Cirrosis Hepática Alcohólica/metabolismo , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...