Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Bone ; 181: 117042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360197

RESUMEN

This study investigated the efficacy of the two FDA-approved bone anabolic ligands of the parathyroid hormone receptor 1 (PTH1R), teriparatide or human parathyroid hormone 1-34 (PTH) and abaloparatide (ABL), to restoring skeletal health using a preclinical murine model of streptozotocin-induced T1-DM. Intermittent daily subcutaneous injections of equal molar doses (12 pmoles/g/day) of PTH (50 ng/g/day), ABL (47.5 ng/g/day), or vehicle, were administered for 28 days to 5-month-old C57Bl/6 J male mice with established T1-DM or control (C) mice. ABL was superior to PTH in increasing or restoring bone mass in control or T1-MD mice, respectively, which was associated with superior stimulation of trabecular and periosteal bone formation, upregulation of osteoclastic/osteoblastic gene expression, and increased circulating bone remodeling markers. Only ABL corrected the reduction in ultimate load, which is a measure of bone strength, induced by T1-DM, and it also increased energy to ultimate load. In addition, bones from T1-DM mice treated with PTH or ABL exhibited increased ultimate stress, a material index, compared to T1-DM mice administered with vehicle. And both PTH and ABL prevented the increased expression of the Wnt antagonist Sost/sclerostin displayed by T1-DM mice. Further, PTH and ABL increased to a similar extent the circulating bone resorption marker CTX and the bone formation marker P1NP in T1-DM after 2 weeks of treatment; however, only ABL sustained these increases after 4 weeks of treatment. We conclude that at equal molar doses, ABL is more effective than PTH in increasing bone mass and restoring the cortical and trabecular bone lost with T1-DM, due to higher and longer-lasting increases in bone remodeling.


Asunto(s)
Diabetes Mellitus Tipo 1 , Teriparatido , Humanos , Ratones , Masculino , Animales , Recién Nacido , Teriparatido/farmacología , Teriparatido/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Densidad Ósea/fisiología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico
5.
Bone Res ; 11(1): 19, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076478

RESUMEN

The mechanisms underlying the bone disease induced by diabetes are complex and not fully understood; and antiresorptive agents, the current standard of care, do not restore the weakened bone architecture. Herein, we reveal the diabetic bone signature in mice at the tissue, cell, and transcriptome levels and demonstrate that three FDA-approved bone-anabolic agents correct it. Diabetes decreased bone mineral density (BMD) and bone formation, damaged microarchitecture, increased porosity of cortical bone, and compromised bone strength. Teriparatide (PTH), abaloparatide (ABL), and romosozumab/anti-sclerostin antibody (Scl-Ab) all restored BMD and corrected the deteriorated bone architecture. Mechanistically, PTH and more potently ABL induced similar responses at the tissue and gene signature levels, increasing both formation and resorption with positive balance towards bone gain. In contrast, Scl-Ab increased formation but decreased resorption. All agents restored bone architecture, corrected cortical porosity, and improved mechanical properties of diabetic bone; and ABL and Scl-Ab increased toughness, a fracture resistance index. Remarkably, all agents increased bone strength over the healthy controls even in the presence of severe hyperglycemia. These findings demonstrate the therapeutic value of bone anabolic agents to treat diabetes-induced bone disease and suggest the need for revisiting the approaches for the treatment of bone fragility in diabetes.

6.
NPJ Regen Med ; 7(1): 63, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266362

RESUMEN

This work rests on our non-viral tissue nanotransfection (TNT) platform to deliver MyoD (TNTMyoD) to injured tissue in vivo. TNTMyoD was performed on skin and successfully induced expression of myogenic factors. TNTMyoD was then used as a therapy 7 days following volumetric muscle loss (VML) of rat tibialis anterior and rescued muscle function. TNTMyoD is promising as VML intervention.

7.
J Bone Miner Res ; 36(4): 768-778, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33316081

RESUMEN

There is an unmet need for interventions with better compliance that prevent the adverse effects of sex steroid deficiency on the musculoskeletal system. We identified a blueberry cultivar (Montgomerym [Mont]) that added to the diet protects female mice from musculoskeletal loss and body weight changes induced by ovariectomy. Mont, but not other blueberries, increased the endogenous antioxidant response by bypassing the traditional antioxidant transcription factor Nrf2 and without activating estrogen receptor canonical signaling. Remarkably, Mont did not protect the male skeleton from androgen-induced bone loss. Moreover, Mont increased the variety of bacterial communities in the gut microbiome (α-diversity) more in female than in male mice; shifted the phylogenetic relatedness of bacterial communities (ß-diversity) further in females than males; and increased the prevalence of the taxon Ruminococcus1 in females but not males. Therefore, this nonpharmacologic intervention (i) protects from estrogen but not androgen deficiency; (ii) preserves bone, skeletal muscle, and body composition; (iii) elicits antioxidant defense responses independently of classical antioxidant/estrogenic signaling; and (iv) increases gut microbiome diversity toward a healthier signature. These findings highlight the impact of nutrition on musculoskeletal and gut microbiome homeostasis and support the precision medicine principle of tailoring dietary interventions to patient individualities, like sex. © 2020 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Antioxidantes , Microbiota , Animales , Huesos , Dieta , Femenino , Humanos , Masculino , Ratones , Filogenia
8.
iScience ; 20: 205-215, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31585407

RESUMEN

Wnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse.

9.
Endocrinology ; 160(7): 1659-1673, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31081900

RESUMEN

Excess of glucocorticoids (GCs) is a leading cause of bone fragility, and therapeutic targets are sorely needed. We report that genetic deletion or pharmacological inhibition of proline-rich tyrosine kinase 2 (Pyk2) prevents GC-induced bone loss by overriding GC effects of detachment-induced bone cell apoptosis (anoikis). In wild-type or vehicle-treated mice, GCs either prevented osteoclast apoptosis or promoted osteoblast/osteocyte apoptosis. In contrast, mice lacking Pyk2 [knockout (KO)] or treated with Pyk2 kinase inhibitor PF-431396 (PF) were protected. KO or PF-treated mice were also protected from GC-induced bone resorption, microarchitecture deterioration, and weakening of biomechanical properties. In KO and PF-treated mice, GC increased osteoclasts in bone and circulating tartrate-resistant acid phosphatase form 5b, an index of osteoclast number. However, bone surfaces covered by osteoclasts and circulating C-terminal telopeptides of type I collagen, an index of osteoclast function, were not increased. The mismatch between osteoclast number vs function induced by Pyk2 deficiency/inhibition was due to osteoclast detachment and anoikis. Further, GC prolongation of osteoclast lifespan was absent in KO and PF-treated osteoclasts, demonstrating Pyk2 as an intrinsic osteoclast-survival regulator. Circumventing Pyk2 activation preserves skeletal integrity by preventing GC effects on bone cell survival (proapoptotic for osteoblasts/osteocytes, antiapoptotic for osteoclasts) and GC-induced bone resorption. Thus, Pyk2/anoikis signaling as a therapeutic target for GC-induced osteoporosis.


Asunto(s)
Anoicis/efectos de los fármacos , Huesos/efectos de los fármacos , Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Glucocorticoides/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Resorción Ósea/metabolismo , Huesos/metabolismo , Femenino , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Ratones , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
10.
Clin Rev Bone Miner Metab ; 16(1): 33-47, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29962904

RESUMEN

Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.

11.
FASEB J ; 32(5): 2878-2890, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401593

RESUMEN

Parathyroid hormone (PTH) affects the skeleton by acting on osteocytes (Ots) in bone through yet unclear mechanisms. We report that matrix metalloproteinase 14 (MMP14) expression/activity are increased in bones from mice with genetic constitutive activation (ca) of the PTH receptor 1 (PTH1R) in Ots (caPTH1ROt) and in bones from mice exposed to elevated PTH levels but not in mice lacking [conditional knockout (cKO)] the PTH1R in Ots (cKOPTH1ROt). Furthermore, PTH upregulates MMP14 in human bone cultures and in Ot-enriched bones from floxed control mice but not from cKOPTH1ROt mice. MMP14 activity increases soluble receptor activator of NF-κΒ ligand production, which in turn, stimulates osteoclast differentiation and resorption. Pharmacologic inhibition of MMP14 activity reduced the high bone remodeling exhibited by caPTH1ROt mice or induced by chronic PTH elevation and decreased bone resorption but allowed full stimulation of bone formation induced by PTH injections, thereby potentiating bone gain. Thus, MMP14 is a new member of the intricate gene network activated in Ots by PTH1R signaling that can be targeted to adjust the skeletal responses to PTH in favor of bone preservation.-Delgado-Calle, J., Hancock, B., Likine, E. F., Sato, A. Y., McAndrews, K., Sanudo, C., Bruzzaniti, A., Riancho, J. A., Tonra, J. R., Bellido, T. MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production.


Asunto(s)
Resorción Ósea/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Osteocitos/metabolismo , Hormona Paratiroidea/metabolismo , Ligando RANK/biosíntesis , Transducción de Señal/fisiología , Animales , Resorción Ósea/genética , Células Cultivadas , Redes Reguladoras de Genes/fisiología , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Noqueados , Osteoclastos/citología , Osteoclastos/metabolismo , Osteocitos/citología , Osteogénesis/fisiología , Hormona Paratiroidea/genética , Ligando RANK/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo
12.
Endocrinology ; 158(3): 664-677, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28359087

RESUMEN

Glucocorticoid excess, either endogenous with diseases of the adrenal gland, stress, or aging or when administered for immunosuppression, induces bone and muscle loss, leading to osteopenia and sarcopenia. Muscle weakness increases the propensity for falling, which, combined with the lower bone mass, increases the fracture risk. The mechanisms underlying glucocorticoid-induced bone and muscle atrophy are not completely understood. We have demonstrated that the loss of bone and muscle mass, decreased bone formation, and reduced muscle strength, hallmarks of glucocorticoid excess, are accompanied by upregulation in both tissues in vivo of the atrophy-related genes atrogin1, MuRF1, and MUSA1. These are E3 ubiquitin ligases traditionally considered muscle-specific. Glucocorticoids also upregulated atrophy genes in cultured osteoblastic/osteocytic cells, in ex vivo bone organ cultures, and in muscle organ cultures and C2C12 myoblasts/myotubes. Furthermore, glucocorticoids markedly increased the expression of components of the Notch signaling pathway in muscle in vivo, ex vivo, and in vitro. In contrast, glucocorticoids did not increase Notch signaling in bone or bone cells. Moreover, the increased expression of atrophy-related genes in muscle, but not in bone, and the decreased myotube diameter induced by glucocorticoids were prevented by inhibiting Notch signaling. Thus, glucocorticoids activate different mechanisms in bone and muscle that upregulate atrophy-related genes. However, the role of these genes in the effects of glucocorticoids in bone is unknown. Nevertheless, these findings advance our knowledge of the mechanism of action of glucocorticoids in the musculoskeletal system and provide the basis for novel therapies to prevent glucocorticoid-induced atrophy of bone and muscle.


Asunto(s)
Huesos/efectos de los fármacos , Glucocorticoides/efectos adversos , Atrofia Muscular/inducido químicamente , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Huesos/metabolismo , Células Cultivadas , Femenino , Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
13.
Bone ; 96: 29-37, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27742498

RESUMEN

After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass, as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Resorción Ósea/patología , Humanos , Osteogénesis , Hormona Paratiroidea/farmacología , Vía de Señalización Wnt
14.
J Bone Miner Res ; 32(3): 486-497, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27683064

RESUMEN

There is an unmet need to understand the mechanisms underlying skeletal deterioration in diabetes mellitus (DM) and to develop therapeutic approaches to treat bone fragility in diabetic patients. We demonstrate herein that mice with type 1 DM induced by streptozotocin exhibited low bone mass, inferior mechanical and material properties, increased bone resorption, decreased bone formation, increased apoptosis of osteocytes, and increased expression of the osteocyte-derived bone formation inhibitor Sost/sclerostin. Further, short treatment of diabetic mice with parathyroid hormone related protein (PTHrP)-derived peptides corrected these changes to levels undistinguishable from non-diabetic mice. In addition, diabetic mice exhibited reduced bone formation in response to mechanical stimulation, which was corrected by treatment with the PTHrP peptides, and higher prevalence of apoptotic osteocytes, which was reduced by loading or by the PTHrP peptides alone and reversed by a combination of loading and PTHrP peptide treatment. In vitro experiments demonstrated that the PTHrP peptides or mechanical stimulation by fluid flow activated the survival kinases ERKs and induced nuclear translocation of the canonical Wnt signaling mediator ß-catenin, and prevented the increase in osteocytic cell apoptosis induced by high glucose. Thus, PTHrP-derived peptides cross-talk with mechanical signaling pathways to reverse skeletal deterioration induced by DM in mice. These findings suggest a crucial role of osteocytes in the harmful effects of diabetes on bone and raise the possibility of targeting these cells as a novel approach to treat skeletal deterioration in diabetes. Moreover, our study suggests the potential therapeutic efficacy of combined pharmacological and mechanical stimuli to promote bone accrual and maintenance in diabetic subjects. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/anatomía & histología , Huesos/fisiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteínas Adaptadoras Transductoras de Señales , Adiposidad/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Fenómenos Biomecánicos , Densidad Ósea/efectos de los fármacos , Resorción Ósea/genética , Resorción Ósea/patología , Huesos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Tamaño de los Órganos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Soporte de Peso
15.
J Bone Miner Res ; 31(10): 1791-1802, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27163932

RESUMEN

Excess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/ß-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/ß-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/ß-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/ß-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/ß-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/ß-catenin signaling. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Glucocorticoides/efectos adversos , Glicoproteínas/deficiencia , Osteoporosis/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Ciclina D1/genética , Ciclina D1/metabolismo , Femenino , Glucocorticoides/farmacología , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Osteoporosis/inducido químicamente , Osteoporosis/genética , Osteoporosis/patología , Osteoprotegerina/genética , Osteoprotegerina/metabolismo
16.
Bone ; 73: 60-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25532480

RESUMEN

Endoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GCs) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells is mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton.


Asunto(s)
Apoptosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Glucocorticoides/farmacología , Osteoblastos/efectos de los fármacos , Osteocitos/efectos de los fármacos , Animales , Femenino , Técnicas In Vitro , Ratones , Osteoblastos/citología , Osteocitos/citología , Fosforilación
17.
PLoS One ; 9(9): e108262, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243714

RESUMEN

Fracture risk in type 2 diabetes is increased despite normal or high bone mineral density, implicating poor bone quality as a risk factor. Raloxifene improves bone material and mechanical properties independent of bone mineral density. This study aimed to determine if raloxifene prevents the negative effects of diabetes on skeletal fragility in diabetes-prone rats. Adult Zucker Diabetic Sprague-Dawley (ZDSD) female rats (20-week-old, n = 24) were fed a diabetogenic high-fat diet and were randomized to receive daily subcutaneous injections of raloxifene or vehicle for 12 weeks. Blood glucose was measured weekly and glycated hemoglobin was measured at baseline and 12 weeks. At sacrifice, femora and lumbar vertebrae were harvested for imaging and mechanical testing. Raloxifene-treated rats had a lower incidence of type 2 diabetes compared with vehicle-treated rats. In addition, raloxifene-treated rats had blood glucose levels significantly lower than both diabetic vehicle-treated rats as well as vehicle-treated rats that did not become diabetic. Femoral toughness was greater in raloxifene-treated rats compared with both diabetic and non-diabetic vehicle-treated ZDSD rats, due to greater energy absorption in the post-yield region of the stress-strain curve. Similar differences between groups were observed for the structural (extrinsic) mechanical properties of energy-to-failure, post-yield energy-to-failure, and post-yield displacement. These results show that raloxifene is beneficial in preventing the onset of diabetes and improving bone material properties in the diabetes-prone ZDSD rat. This presents unique therapeutic potential for raloxifene in preserving bone quality in diabetes as well as in diabetes prevention, if these results can be supported by future experimental and clinical studies.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Huesos/efectos de los fármacos , Diabetes Mellitus Experimental/fisiopatología , Clorhidrato de Raloxifeno/farmacología , Animales , Remodelación Ósea , Huesos/fisiopatología , Femenino , Ratas , Ratas Sprague-Dawley , Ratas Zucker
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...