Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 10(9): 1329-1342, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34008349

RESUMEN

The conventional planar culture of adherent cells is inefficient for large-scale manufacturing of cell and gene therapy products. We developed a facile and efficient bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells (hMSCs) with microcarriers in bioreactors. We first compared culture medium with and without nucleosides and found the former maintained the expression of surface markers of hMSCs during their prolonged culture and enabled faster cell proliferation. Subsequently, we developed our bead-to-bead cell transfer method to subculture hMSCs and found that intermittent agitation after adding fresh microcarriers to cell-populated microcarriers could promote spontaneous cell migration to fresh microcarriers, reduce microcarrier aggregation, and improve cell yield. This method enabled serial subculture of hMSCs in spinner flasks from passage 4 to passage 9 without using proteolytic enzymes, which showed faster cell proliferation than the serial planar cultures undergoing multiple enzyme treatment. Finally, we used the medium containing nucleosides and our bead-to-bead cell transfer method for cell culture scale-up from 4- to 50-L cultures in single-use bioreactors. We achieved a 242-fold increase in the number of cells to 1.45 × 1010 after 27-day culture and found that the cells harvested from the bioreactors maintained proliferation ability, expression of their surface markers, tri-lineage differentiation potential and immunomodulatory property. This study shows the promotive effect of nucleosides on hMSC expansion and the potential of using our bead-to-bead transfer method for larger-scale manufacturing of hMSCs for cell therapy.


Asunto(s)
Células Madre Mesenquimatosas , Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Proliferación Celular , Medios de Cultivo , Humanos
2.
J Pain Res ; 11: 1645-1657, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214274

RESUMEN

PURPOSE: This study was aimed to investigate the effect of localized vibration on sensory thresholds in mice and humans using a novel quantitative method. PARTICIPANTS AND METHODS: The sensory thresholds of 7-week-old male C57BL/6J mice were measured with four sine-wave electrostimulation frequencies (5, 50, 250, and 2,000 Hz) before and after applying 2-minute vibration to the plantar side of the foot in mice. In human participants (16 males and 16 females; mean age, 21.0±0.8 years), the sensory threshold was measured at 50 Hz before and after applying 2-minute and 5-minute vibrations to the dorsal side of the foot. RESULTS: Application of a 2-minute vibration at either the ipsilateral or contralateral side modulated the sensory thresholds elicited by a 5- or 50-Hz right electrostimulation in mice. In human participants, application of a 5-minute vibration at either the ipsilateral or contralateral side modulated the sensory threshold elicited by 50-Hz right electrostimulation, but had no effect on local skin temperature. These results suggest that the right side of pain-related Aδ fibers (50 Hz) or C fibers (5 Hz) was modulated by the localized ipsilateral or contralateral side of vibratory stimuli, respectively, in mice and humans. CONCLUSION: The ability of contralateral vibration to modify the right sensory thresholds suggests possible involvement of the central nervous system in vibratory modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...