Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 332: 121907, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431393

RESUMEN

Low-concentration alkali treatments at low temperatures facilitate the crystal transition of cellulose I to II. However, the transition mechanism remains unclear. Hence, in this study, we traced the transition using in situ solid-state 13C CP/MAS NMR, WAXS, and 23Na NMR relaxation measurements. In situ solid-state 13C CP/MAS NMR and WAXS measurements revealed that soaking cellulose in NaOH at low temperatures disrupts the intramolecular hydrogen bonds and lowers the crystallinity of cellulose. The dynamics of Na ions (NaOH) play a crucial role in causing these phenomena. 23Na NMR relaxation measurements indicated that the Na-ion correlation time becomes longer during the crystal transition. This transition requires the penetration of Na ions (NaOH) into the cellulose crystal and a reduction in Na-ion mobility, which occurs at low temperatures or high NaOH concentrations. The interactions between cellulose and NaOH disrupt intramolecular hydrogen bonds, inducing a conformational change in the cellulose molecules into a more stable arrangement. This weakens the hydrophobic interactions of cellulose, and facilitates the penetration of NaOH and water into the crystal, leading to the formation of alkali cellulose. Our findings suggest that a strategy to control NaOH dynamics could lead to the discovery of a novel preparation method for cellulose II.

2.
ACS Macro Lett ; : 252-259, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334272

RESUMEN

Unnatural polysaccharide analogs and their biological activities and material properties have attracted considerable research interest. However, these efforts often encounter challenges, especially those related to synthetic complexity and scalability. Here, we report the chemical synthesis of unnatural (1→6)-polysaccharides using levoglucosenone (LGO) and dihydrolevoglucosenone (Cyrene), which are derived from cellulose. Using a versatile monomer synthesis from LGO and Cyrene and cationic ring-opening polymerization, (1→6)-polysaccharides with various tailored substituent patterns are obtained. Additionally, environmentally benign and easy-to-handle organic Brønsted acid catalysts are investigated. This study demonstrates well-controlled first-order polymerization kinetics for the reactive (1S,5R)-6,8-dioxabicyclo[3,2,1]octane (DBO) monomer. The synthesized (1→6)-polysaccharides exhibit high thermal stability and form amorphous solids under ambient conditions, which could be processed into highly transparent self-standing films. Additionally, these polymers exhibit excellent closed-loop chemical recyclability. This study provides an important approach to explore the chemical spaces of unnatural polysaccharides and contributes to the development of sustainable polymer materials from abundant biomass resources.

3.
Anal Chem ; 96(5): 2078-2086, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259249

RESUMEN

A series of optically active helical poly(phenylacetylene)s (PPA-Pro1, PPA-Pro3, PPA-Pro6, PPA-Pro9, and PPA-Pro12) bearing different chain lengths of L-proline oligopeptide in the side chains were obtained by polymerizing the corresponding novel phenylacetylene monomers. The monomer adopted a trans-rich helix structure when the L-proline oligopeptide chain length was longer, according to the optical activities and 2D-NMR analysis. The helical structure could be maintained and significantly influenced the polymers' helical conformation by introducing the L-proline oligopeptide to the pendants. By the way, the morphology of PPA-Pro3 was observed by atomic force microscope (AFM) on highly oriented pyrolytic graphite (HOPG), and the information on the helix direction, pitch, and chain arrangement was obtained. Also, the chiral separation properties of these polymer-based chiral stationary phases (CSPs) were investigated using high-performance liquid chromatography (HPLC). The poly(phenylacetylene)s showed enhanced enantioseparation properties toward various racemates depending on the longer chain length of the L-proline oligopeptide in the pendants and the positive synergy between the helical backbone and helical side chains. Particularly, PPA-Pro9 showed comparable or even superior enantioseparation properties for racemates 2 and 9 to four commercial columns (Daicel Chiralpak or Chiralcel AD, AS, OD, and OT), indicating that these poly(phenylacetylene)-based CSPs have potential practical values. This work presented here provides inspiration for the further development of CSPs based on a new paradigm.

4.
Carbohydr Polym ; 319: 121185, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567719

RESUMEN

Isomaltomegalosaccharides with α-(1 â†’ 4) and α-(1 â†’ 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 â†’ 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 â†’ 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 â†’ 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 â†’ 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.

5.
ACS Appl Mater Interfaces ; 15(28): 33829-33837, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428837

RESUMEN

Photonic transistor memory with high-speed communication and energy-saving capabilities has emerged as a new data storage technology. However, most floating-gate electrets are composed of quantum dots derived from petroleum or metals, which are either toxic or harmful to the environment. In this study, an environmentally friendly floating-gate electret made entirely from biomass-derived materials was designed for photonic memories. The results show that the photosensitive hemin and its derivative protoporphyrin IX (PPIX) were successfully embedded in a polylactic acid (PLA) matrix. Correspondingly, their disparate photochemistry and core structure strongly affected the photosensitivity and charge-trapping capacity of the prepared electrets. With an appropriate energy-level alignment, the interlayer exciton formed with the correct alignment of energy levels within the PPIX/PLA electret. In addition, the demetallized core offered a unique relaxation dynamic and additional trapping sites to consolidate the charges. Correspondingly, the as-prepared device exhibited a memory ratio of up to 2.5 × 107 with photo-writing-electrical-erasing characteristics. Conversely, hemin demonstrated self-charge transfer during relaxation, making it challenging for the device to store the charges and exhibit a photorecovery behavior. Furthermore, the effect of trapping site discreteness on memory performance was also investigated. The photoactive components were effectively distributed due to the high dipole-dipole interaction between the PLA matrix and PPIX, resulting in a sustained memory performance for at least 104 s after light removal. The photonic memory was also realized on a bio-derived dielectric flexible substrate. Accordingly, a reliable photorecording behavior was observed, wherein, even after 1000 cycles of bending under a 5 mm bending radius, the data was retained for more than 104 s. To our knowledge, it is the first time that a two-pronged approach has been used to improve the performance of photonic memories while addressing the issue of sustainability with a biodegradable electret made entirely from natural materials.

6.
Angew Chem Int Ed Engl ; 62(35): e202304493, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37458573

RESUMEN

Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10-60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.

7.
Carbohydr Polym ; 316: 120976, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321706

RESUMEN

Thermoplastic elastomers (TPEs) have long been used in a wide range of industries. However, most existing TPEs are petroleum-derived polymers. To realize environmentally benign alternatives to conventional TPEs, cellulose acetate is a promising TPE hard segment because of its sufficient mechanical properties, availability from renewable sources, and biodegradability in natural environments. Because the degree of substitution (DS) of cellulose acetate governs a range of physical properties, it is a useful parameter for designing novel cellulose acetate-based TPEs. In this study, we synthesized cellulose acetate-based ABA-type triblock copolymers (AcCelx-b-PDL-b-AcCelx) containing a celloologosaccharide acetate hard A segment (AcCelx, where x is the DS; x = 3.0, 2.6, and 2.3) and a poly(δ-decanolactone) (PDL) soft B segment. Small-angle X-ray scattering showed that decreasing the DS of AcCelx-b-PDL-b-AcCelx resulted in the formation of a more ordered microphase-separated structure. Owing to the microphase separation of the hard cellulosic and soft PDL segments, all the AcCelx-b-PDL-b-AcCelx samples exhibited elastomer-like properties. Moreover, the decrease in DS improved toughness and suppressed stress relaxation. Furthermore, preliminary biodegradation tests in an aqueous environment revealed that the decrease in DS endowed AcCelx-b-PDL-b-AcCelx with greater biodegradability potential. This work demonstrates the usefulness of cellulose acetate-based TPEs as next-generation sustainable materials.


Asunto(s)
Elastómeros , Elastómeros/química , Temperatura
8.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242043

RESUMEN

Recently, experimental investigations of a class of temperature-responsive polymers tethered to oligooxyethylene side chains terminated with alkyl groups have been conducted. In this study, aqueous solutions of poly(glycidyl ether)s (PGE) with varying numbers of oxyethylene units, poly(methyl(oligooxyethylene)n glycidyl ether) (poly(Me(EO)nGE)), and poly(ethyl(oligooxyethylene)n glycidyl ether) (poly(Et(EO)nGE) (n = 0, 1, and 2) were investigated by all-atom molecular dynamics simulations, focusing on the thermal responses of their chain extensions, the recombination of intrapolymer and polymer-water hydrogen bonds, and water-solvation shells around the alkyl groups. No clear relationship was established between the phase-transition temperature and the polymer-chain extensions unlike the case for the coil-globule transition of poly(N-isopropylacrylamide). However, the temperature response of the first water-solvation shell around the alkyl group exhibited a notable correlation with the phase-transition temperature. In addition, the temperature at which the hydrophobic hydration shell strength around the terminal alkyl group equals the bulk water density (TCRP) was slightly lower than the cloud point temperature (TCLP) for the methyl-terminated poly(Me(EO)nGE) and slightly higher for the ethyl-terminated poly(Et(EO)nGE). It was concluded that the polymer-chain fluctuation affects the relationship between TCRP and TCLP.

9.
Analyst ; 148(8): 1877-1886, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36960700

RESUMEN

A novel one-handed helical copoly(phenylacetylene) (CPA) bearing L-proline tripeptide pendants and a few triethoxysilyl residues was synthesized and hybridized into SiO2 porous microspheres (PMSs) during microsphere growth through the hydrolytic polycondensation of ethoxysilyl groups. Nuclear magnetic resonance and Fourier transform infrared spectroscopy results verified the successful preparation of CPA and its hybrid product using SiO2 PMSs. The chiral recognition ability of the resulting CPA with a hybridized-type chiral stationary phase (HCSP) for high-performance liquid chromatography (HPLC) was investigated, revealing its high recognition ability for selected racemates. Moreover, the HCSP showed good solvent tolerability, thus broadening the selection of suitable eluents. The separation effect of the HCSP for the racemate N,N-diphenylcyclohexane-1,2-dicarboxamide (7) improved significantly after introducing CHCl3 in the eluent, resulting in separation factors equivalent or superior to common commercially available polysaccharide-based chiral stationary phases. The proposed preparation strategy provides a new and valuable method for obtaining poly(phenylacetylene)-based HCSPs suitable for a wide range of applications and eluent conditions.

10.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771966

RESUMEN

The redox behaviors of macrocyclic molecules with an entirely π-conjugated system are of interest due to their unique optical, electronic, and magnetic properties. In this study, defect-free cyclic P3HT with a degree of polymerization (DPn) from 14 to 43 was synthesized based on our previously established method, and its unique redox behaviors arising from the cyclic topology were investigated. Cyclic voltammetry (CV) showed that the HOMO level of cyclic P3HT decreases from -4.86 eV (14 mer) to -4.89 eV (43 mer), in contrast to the linear counterparts increasing from -4.94 eV (14 mer) to -4.91 eV (43 mer). During the CV measurement, linear P3HT suffered from electro-oxidation at the chain ends, while cyclic P3HT was stable. ESR and UV-Vis-NIR spectroscopy suggested that cyclic P3HT has stronger dicationic properties due to the interactions between the polarons. On the other hand, linear P3HT showed characteristics of polaron pairs with multiple isolated polarons. Moreover, the dicationic properties of cyclic P3HT were more pronounced for the smaller macrocycles.

11.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365529

RESUMEN

Silver nanoparticles (AgNPs) are used in a wide range of applications, and the size control and stability of the nanoparticles are crucial aspects in their applications. In the present study, cyclized poly(ethylene glycol) (c-PEG) with various molecular weights, along with linear PEG with hydroxy chain ends (HO-PEG-OH) and methoxy chain ends (MeO-PEG-OMe) were applied for the Tollens' synthesis of AgNPs. The particle size was significantly affected by the topology and end groups of PEG. For example, the size determined by TEM was 40 ± 7 nm for HO-PEG5k-OH, 21 ± 4 nm for c-PEG5k, and 48 ± 9 nm for MeO-PEG5k-OMe when the molar ratio of PEG to AgNO3 (ω) was 44. The stability of AgNPs was also drastically improved by cyclization; the relative UV-Vis absorption intensity (A/A0 × 100%) at λmax to determine the proportion of persisting AgNPs in an aqueous NaCl solution (37.5 mM) was 58% for HO-PEG5k-OH, 80% for c-PEG5k, and 40% for MeO-PEG5k-OMe, despite the fact that AgNPs with c-PEG5k were much smaller than those with HO-PEG5k-OH and MeO-PEG5k-OMe.

12.
Nanoscale Adv ; 4(2): 532-545, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132700

RESUMEN

Silver nanoparticles (AgNPs) are practically valuable in biological applications. However, no steady PEGylation has been established, which is essential for internal use in humans or animals. In this study, cyclic PEG (c-PEG) without any chemical inhomogeneity is physisorbed onto AgNPs to successfully PEGylate and drastically enhance the dispersion stability against physiological conditions, white light, and high temperature. In contrast, linear HO-PEG-OH and MeO-PEG-OMe do not confer stability to AgNPs, and HS-PEG-OMe, which is often used for gold nanoparticles, sulfidates the surface to considerably degrade the properties. TEM shows an essentially intact nanostructure of c-PEG-physisorbed AgNPs even after heating at 95 °C, while complete disturbance is observed for other AgNPs. Molecular weight- and concentration-dependent stabilization by c-PEG is investigated, and DLS and ζ-potential measurements prove the formation of a c-PEG layer on the surface of AgNPs. Furthermore, c-PEG-physisorbed AgNPs exhibit persistent antimicrobial activity and cytotoxicity.

13.
J Am Chem Soc ; 144(39): 17905-17915, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36150017

RESUMEN

Synchronously and thoroughly adjusting the chemical structure difference between two blocks of the diblock copolymer is very useful for designing materials but difficult to achieve via self-switchable alternating copolymerization. Here, we report self-switchable alternating copolymerization from a mixture of two different cyclic anhydrides, epoxides, and oxetanes, where a simple alkali metal carboxylate catalyst switches between ring-opening alternating copolymerization (ROCOP) of cyclic anhydrides/epoxides and ROCOP of cyclic anhydrides/oxetanes, resulting in the formation of a perfect block tetrapolymer. By investigating the reactivity ratio of these comonomers, a reactivity gradient was established, enabling the precise synthesis of block copolymers with synchronous adjustment of each unit's chemical structure/sequence/topology. Consequently, a diblock tetrapolymer with two glass transition temperatures (Tg) can be easily produced by adjusting the difference in chemical structures between the two blocks.

14.
Biomacromolecules ; 23(9): 3978-3989, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039560

RESUMEN

Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach. In the bulk, the BCOs self-assembled into common lamellar, cylindrical, and spherical carbohydrate microdomains as well as double gyroid, hexagonally perforated lamellar, and Fddd network morphologies with domain spacings of ∼7 nm. In thin films, long-range-ordered periodic carbohydrate microdomains were fabricated via spin coating. Such controlled spatial arrangements of functional carbohydrate moieties on the nanoscale have great application potential in biomedical and nanofabrication fields.


Asunto(s)
Nanoestructuras , Carbohidratos , Nanoestructuras/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-35857433

RESUMEN

For highly efficient heat dissipation of thin electronic devices, development of film materials that exhibit high thermal conductivity in the in-plane direction is desired. In particular, it is important to develop thermally conductive films with large in-plane anisotropy to prevent thermal interference between heat sources in close proximity and to cool in other directions by diffusion. In this study, we developed flexible composite films composed of a uniaxially aligned carbon-fiber filler within a cellulose nanofiber matrix through liquid-phase three-dimensional patterning. The film exhibited a high in-plane thermal conductivity anisotropy of 433%, with combined properties of a thermal conductivity of 7.8 W/mK in the aligned direction and a thermal conductivity of 1.8 W/mK in the in-plane orthogonal direction. This remarkable thermal conductivity and in-plane anisotropy showed the ability to significantly cool powder electroluminescent devices formed on the composite film and also to cool two heat sources in close proximity without thermal interference. In addition, the carbon-fiber filler could be extracted from the composite films by heat treatment at 450 °C and reused as a thermally conductive material.

16.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566993

RESUMEN

The topology effects of cyclization on thermal phase transition behaviors were investigated for a series of amphiphilic Pluronic copolymers of both hydrophilic-hydrophobic-hydrophilic and hydrophobic-hydrophilic-hydrophobic block sequences. The dye solubilization measurements revealed the lowered critical micelle temperatures (TCMT) along with the decreased micellization enthalpy (ΔHmic) and entropy (ΔSmic) for the cyclized species. Furthermore, the transmittance and dynamic light scattering (DLS) measurements indicated a block sequence-dependent effect on the clouding phenomena, where a profound decrease in cloud point (Tc) was only found for the copolymers with a hydrophilic-hydrophobic-hydrophilic block sequence. Thus, the effect of cyclization on these critical temperatures was manifested differently depending on its block sequence. Finally, a comparison of the linear hydroxy-terminated, methoxy-terminated, and cyclized species indicated the effect of cyclization to be unique from a simple elimination of the terminal hydrophilic moieties.

17.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630875

RESUMEN

Block copolymers (BCPs) have garnered considerable interest due to their ability to form microphase-separated structures suitable for nanofabrication. For these applications, it is critical to achieve both sufficient etch selectivity and a small domain size. To meet both requirements concurrently, we propose the use of oligosaccharide and oligodimethylsiloxane as hydrophilic and etch-resistant hydrophobic inorganic blocks, respectively, to build up a novel BCP system, i.e., carbohydrate-inorganic hybrid BCP. The carbohydrate-inorganic hybrid BCPs were synthesized via a click reaction between oligodimethylsiloxane with an azido group at each chain end and propargyl-functionalized maltooligosaccharide (consisting of one, two, and three glucose units). In the bulk state, small-angle X-ray scattering revealed that these BCPs microphase separated into gyroid, asymmetric lamellar, and symmetric lamellar structures with domain-spacing ranging from 5.0 to 5.9 nm depending on the volume fraction. Additionally, we investigated microphase-separated structures in the thin film state and discovered that the BCP with the most asymmetric composition formed an ultrafine and highly oriented gyroid structure as well as in the bulk state. After reactive ion etching, the gyroid thin film was transformed into a nanoporous-structured gyroid SiO2 material, demonstrating the material's promising potential as nanotemplates.

18.
Acta Biomater ; 142: 136-148, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158080

RESUMEN

Membrane active antimicrobial peptide mimics have been considered as promising alternatives to antibiotics, which interact with bacterial cell membranes to combat bacteria and avoid the emergence of multidrug-resistant bacteria. Herein, a series of star-shaped and membrane-active cationic polyetheramides derived from amino acids, were synthesized via condensation of amino acids and polyetheamine (T403). The antibacterial and anti-biofilm activitives as well as the biocompatibility of these amino acids derived polyetheramides (AAPEAs) were investigated in detail. The star-shaped AAPEAs showed high-efficient and broad-spectrum antibacterial activity against the Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogens. In addition, the antibacterial activity was significantly affected by the type of amino acid. L-Trp-T403, which was obtained from L-tryptophan and polyetheramine, exhibited the best antibacterial activity with the minimum inhibitory concentration (MIC) of 1 µg/mL against methicillin-resistant S. aureus (MRSA). Time-kill kinetics and multi-passage resistance tests experiments indicated that L-Trp-T403 could rapidly kill bacteria within 1 h. This compound also showed potent antibacterial activity against bacteria over many passages. Moreover, the AAPEAs exhibited outstanding stability and long-term antibacterial activity in complex mammalian body fluids, as well as good biocompatibility, low hemolytic activity, slight toxicity for mammalian cell (L929) and low in vivo toxicity. The antibacterial activity of L-Trp-T403 was found to be based on the disruption of bacterial membranes, which leads to the leakage of the internal cytoplasm. The AAPEAs possessed high antibacterial and anti-biofilm activity, thus, they are promising to be used as long-term and biofilm-disrupting antimicrobial agents. STATEMENT OF SIGNIFICANCE: The growing epidemic of MDR-bacteria is becoming a severe public health threat. Here, a series of amino acids derived polyetheramides (AAPEAs) with a star-shaped polyether amide scaffold was synthesized. The star-shaped AAPEAs displayed broad-spectrum antibacterial activity against Gram-positive, Gram-negative bacteria and drug-resistant bacteria MRSA. Notably, the star-shaped AAPEAs were stable under plasma conditions and showed outstanding stability and long-term antibacterial activity in various complex mammalian fluids. Moreover, these star-shaped AAPEAs not only inhibited the formation of biofilms but also disrupted the established biofilms. Furthermore, the membrane-active AAPEAs eradicated bacteria via the fast membrane lytic mechanism, thus plausibly overcoming the MDR effect. These results demonstrate that membrane-active AAPEAs can serve as emerging long-term and biofilm-disrupting antimicrobial agents to treat biofilm-related infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Aminoácidos/química , Aminoácidos/farmacología , Animales , Antibacterianos/química , Biopelículas , Bacterias Gramnegativas , Bacterias Grampositivas , Mamíferos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
19.
Nat Commun ; 13(1): 163, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013294

RESUMEN

Switchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.

20.
Eur J Med Chem ; 228: 113977, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34772526

RESUMEN

The increasingly growing epidemics of multidrug-resistant bacteria are becoming severe public health threat. There is in an urgent need to develop new antibacterial agents with broad-spectrum antibacterial activity and high selectivity. Here, a series of N-terminal dipeptide mimetics with an aromatic amide moiety were synthesized from amino acids. The effects of amino acid type and aromatic moiety on the biological activities of the mimetics were evaluated. The dipeptide mimetics not only showed significant broad-spectrum antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae), Gram-positive (Staphylococcus aureus) and drug-resistant bacterium MRSA (methicillin-resistant S. aureus) but also demonstrated high selectivity for S. aureus versus mammalian erythrocytes. The coupling product of L-valine with p-alkynylaniline (dipeptide mimetic 7) exhibited the best antibacterial activities with minimum inhibitory concentration (MIC) ranging from 2.5 to 5 µg/mL. Moreover, the bactericidal kinetics and multi-passage resistance tests indicated that the mimetic 7 both rapidly killed bacteria and had a low probability of emergence of antimalarial resistance. Meanwhile, the mimetic 7 possessed the ability to both inhibit bacterial biofilm formation and eradicate mature biofilm. The depolarization and destruction of the bacterial cell membrane is the main sterilization mechanism, which hinders the propensity to develop bacterial resistance. Furthermore, the mimetic 7 also showed good antineoplastic activity against gastric cancer cell (SGC 7901, IC50 = 70.8 µg/mL), while it had very low toxicity to mammalian cell (L929). The mimetics bear considerable potential to be used as antibacterial and anticancer agents to combat antibiotic resistance.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Dipéptidos/farmacología , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...