Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 82(7): 1010-1014, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31961611

RESUMEN

A newly prepared tetraazulene-fused tetracene diimide (TA-fused TDI) showed absorption in the near-IR region owing to the effective extension of the π-conjugated system as well as a large two-photon absorption cross-section (σ(2) =2140 GM) at 950 nm. Four reversible reduction processes and n-type semiconductivity were also confirmed as attractive electronic properties of this compound.

2.
Nat Chem ; 8(10): 946-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27657871

RESUMEN

Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds-known as plastic crystals-can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

3.
Dalton Trans ; 45(8): 3398-406, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26791265

RESUMEN

Polar crystals exhibiting second-order harmonic generation (SHG) were designed by adjusting the intermolecular interactions of mononuclear Cu(ii) complexes in which one H2O, two pyridines (py), and two p-substituted benzoate (p-RBA) ligands (R = F, Cl, Br, I, CH3, and OCH3) were coordinated to a Cu(ii) ion, forming a penta-coordinated asymmetric [Cu(ii)(p-RBA)2(py)2(H2O)] mononuclear structure with a permanent dipole moment along the direction of the Cu-OH2 coordination axis. Each asymmetric [Cu(ii)(p-RBA)2(py)2(H2O)] complex formed a polar one-dimensional hydrogen-bonded chain, [Cu(ii)(p-RBA)2(py)2(H2O)]∞, between the non-coordinated carboxylate oxygen atom of the p-RBA ligand and the hydrogen atom of the H2O molecule. The formation of a polar crystal depended on the arrangement of polar hydrogen-bonded chains; the parallel arrangement of each polar chain resulted in a polar crystal. The chemical design of the R group in the p-RBA ligand enabled tuning of the magnitude of the interchain interactions and crystal polarity; polar crystals were obtained using p-RBA ligands with R = Cl, Br, I, and OCH3. In contrast, apolar crystals were grown from complexes containing p-RBA ligands with R = F and CH3. In all crystals, a polar two-dimensional (2D) layer constructed from the parallel polar [Cu(ii)(p-RBA)2(py)2(H2O)]∞ chain arrangement was formed based on weak van der Waals C-H...(-)O- interactions between the hydrogen atom of py and the carboxylate oxygen atom of the p-RBA ligand. Weak interlayer halogen (X)...π and multipoint C-H...π interactions played important roles in forming parallel arrangements of polar 2D layers and polar crystals, but there were no effective intermolecular interactions between the polar 2D layers in apolar [Cu(ii)(p-FBA)2(py)2(H2O)] and [Cu(ii)(p-CH3BA)2(py)2(H2O)] crystals. The magnitudes of the interlayer interactions in the polar crystals were larger than those in the apolar ones because of the effective intermolecular interactions. The SHG intensities of the four polar crystals were approximately 0.7 times larger than that of sucrose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...