Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0037823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022178

RESUMEN

Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.


Asunto(s)
Antioxidantes , COVID-19 , Humanos , Ratones , Animales , Antioxidantes/metabolismo , SARS-CoV-2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Pandemias , COVID-19/patología , Pulmón , Células Epiteliales
2.
Nat Methods ; 20(4): 512-522, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36823332

RESUMEN

In response to the emergence of SARS-CoV-2 variants of concern, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info , a platform that currently tracks over 40 million combinations of Pango lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials and the general public. We describe the interpretable visualizations available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data and the server infrastructure that enables widespread data dissemination via a high-performance API that can be accessed using an R package. We show how outbreak.info can be used for genomic surveillance and as a hypothesis-generation tool to understand the ongoing pandemic at varying geographic and temporal scales.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Genómica , Brotes de Enfermedades , Mutación
3.
Sci Rep ; 12(1): 15517, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109550

RESUMEN

Coronavirus disease 2019 (COVID-19) continues to significantly impact the global population, thus countermeasure platforms that enable rapid development of therapeutics against variants of SARS-CoV-2 are essential. We report use of a phage display human antibody library approach to rapidly identify neutralizing antibodies (nAbs) against SARS-CoV-2. We demonstrate the binding and neutralization capability of two nAbs, STI-2020 and STI-5041, against the SARS-CoV-2 WA-1 strain as well as the Alpha and Beta variants. STI-2020 and STI-5041 were protective when administered intravenously or intranasally in the golden (Syrian) hamster model of COVID-19 challenged with the WA-1 strain or Beta variant. The ability to administer nAbs intravenously and intranasally may have important therapeutic implications and Phase 1 healthy subjects clinical trials are ongoing.


Asunto(s)
COVID-19 , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Cricetinae , Humanos , Mesocricetus , Pruebas de Neutralización , SARS-CoV-2
4.
Res Sq ; 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35794893

RESUMEN

The emergence of SARS-CoV-2 variants of concern has prompted the need for near real-time genomic surveillance to inform public health interventions. In response to this need, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that currently tracks over 40 million combinations of PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials, and the general public. We describe the interpretable and opinionated visualizations in the variant and location focussed reports available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data, and the server infrastructure that enables widespread data dissemination via a high performance API that can be accessed using an R package. We present a case study that illustrates how outbreak.info can be used for genomic surveillance and as a hypothesis generation tool to understand the ongoing pandemic at varying geographic and temporal scales. With an emphasis on scalability, interactivity, interpretability, and reusability, outbreak.info provides a template to enable genomic surveillance at a global and localized scale.

5.
ACS Chem Neurosci ; 12(4): 589-595, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33522795

RESUMEN

Olfactory dysfunction is one of the most frequent and specific symptoms of coronavirus disease 2019 (COVID-19). Information on the damage and repair of the neuroepithelium and its impact on olfactory function after COVID-19 is still incomplete. While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the ongoing worldwide outbreak of COVID-19, little is known about the changes triggered by SARS-CoV-2 in the olfactory epithelium (OE) at the cellular level. Here, we report profiles of the OE after SARS-CoV-2 infection in golden Syrian hamsters, which is a reliable animal model of COVID-19. We observed severe damage in the OE as early as 3 days postinoculation and regionally specific damage and regeneration of the OE within the nasal cavity; the nasal septal region demonstrated the fastest recovery compared to other regions in the nasal turbinates. These findings suggest that anosmia related to SARS-CoV-2 infection may be fully reversible.


Asunto(s)
Anosmia/fisiopatología , COVID-19/patología , Mucosa Olfatoria/patología , Neuronas Receptoras Olfatorias/patología , Regeneración , SARS-CoV-2 , Animales , Anosmia/etiología , COVID-19/complicaciones , COVID-19/fisiopatología , Modelos Animales de Enfermedad , Mesocricetus , Cavidad Nasal , Tabique Nasal , Mucosa Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Tamaño de los Órganos , Cornetes Nasales
6.
Virus Res ; 292: 198246, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33249060

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC50 range, 2.0-31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17 F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Asunto(s)
Antivirales/farmacología , Carbamatos/farmacología , Carbazoles/farmacología , Citocinas/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Citocinas/inmunología , Dihidroorotato Deshidrogenasa , Células HeLa , Humanos , Inflamación/tratamiento farmacológico , Inflamación/virología , Células Vero , Tratamiento Farmacológico de COVID-19
7.
bioRxiv ; 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32793904

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC 50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

8.
Pathogens ; 9(3)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155851

RESUMEN

Lassa virus (LASV), the causative agent of Lassa fever, is estimated to be responsible for up to 300,000 new infections and 5000 deaths each year across Western Africa. The most recent 2018 and 2019 Nigerian outbreaks featured alarmingly high fatality rates of up to 25.4%. In addition to the severity and high fatality of the disease, a significant population of survivors suffer from long-term sequelae, such as sensorineural hearing loss, resulting in a huge socioeconomic burden in endemic regions. There are no Food and Drug Administration (FDA)-approved vaccines, and therapeutics remain extremely limited for Lassa fever. Development of countermeasures depends on relevant animal models that can develop a disease strongly mimicking the pathogenic features of Lassa fever in humans. The objective of this review is to evaluate the currently available animal models for LASV infection with an emphasis on their pathogenic and histologic characteristics as well as recent advances in the development of a suitable rodent model. This information may facilitate the development of an improved animal model for understanding disease pathogenesis of Lassa fever and for vaccine or antiviral testing.

9.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996435

RESUMEN

Argentine hemorrhagic fever is a potentially lethal disease that is caused by Junin virus (JUNV). There are currently around 5 million individuals at risk of infection within regions of endemicity in Argentina. The live attenuated vaccine strain Candid #1 (Can) is approved for use in regions of endemicity and has substantially decreased the number of annual Argentine hemorrhagic fever (AHF) cases. The glycoprotein (GPC) gene is primarily responsible for attenuation of the Can strain, and we have shown that the absence of an N-linked glycosylation motif in the subunit G1 of the glycoprotein complex of Can, which is otherwise present in the wild-type pathogenic JUNV, causes GPC retention in the endoplasmic reticulum (ER). Here, we show that Can GPC aggregates in the ER of infected cells, forming incorrect cross-chain disulfide bonds, which results in impaired GPC processing into G1 and G2. The GPC fails to cleave into its G1 and G2 subunits and is targeted for degradation within lysosomes. Cells infected with the wild-type Romero (Rom) strain do not produce aggregates that are observed in Can infection, and the stress on the ER remains minimal. While the mutation of the N-linked glycosylation motif (T168A) is primarily responsible for the formation of aggregates, other mutations within G1 that occurred earlier in the passage history of the Can strain also contribute to aggregation of the GPC within the ER.IMPORTANCE The development of vaccines and therapeutics to combat viral hemorrhagic fevers remains a top priority within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. The Can strain, derived from the pathogenic XJ strain of JUNV, has been demonstrated to be both safe and protective against AHF. While the vaccine strain is approved for use in regions of endemicity within Argentina, the mechanisms of Can attenuation have not been elucidated. A better understanding of the viral genetic determinants of attenuation will improve our understanding of the mechanisms contributing to disease pathogenesis and provide critical information for the rational design of live attenuated vaccine candidates for other viral hemorrhagic fevers.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Glicoproteínas/inmunología , Virus Junin/inmunología , Lisosomas/metabolismo , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Autofagia , Encéfalo/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/inmunología , Glicoproteínas/genética , Glicosilación , Células HEK293 , Fiebre Hemorrágica Americana/virología , Fiebres Hemorrágicas Virales/prevención & control , Humanos , Virus Junin/genética , Ratones , Mutación , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
10.
mSphere ; 4(5)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554720

RESUMEN

Lassa virus (LASV), a member of the family Arenaviridae, is the causative agent of Lassa fever. Lassa virus is endemic in West African countries, such as Nigeria, Guinea, Liberia, and Sierra Leone, and causes outbreaks annually. Lassa fever onset begins with "flu-like" symptoms and may develop into lethal hemorrhagic disease in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few licensed vaccines or therapeutics against Lassa fever. The fact that animal models are limited and the fact that mostly laboratory-derived viruses are used for studies limit the successful development of countermeasures. In this study, we demonstrated that the LASV isolate LF2384-NS-DIA-1 (LF2384), which was directly isolated from a serum sample from a fatal human Lassa fever case in the 2012 Sierra Leone outbreak, causes uniformly lethal infection in outbred Hartley guinea pigs without virus-host adaptation. This is the first report of a clinically isolated strain of LASV causing lethal infection in outbred guinea pigs. This novel guinea pig model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics.IMPORTANCE Lassa virus, the causative agent of Lassa fever, is a zoonotic pathogen causing annual outbreaks in West African countries. Human patients can develop lethal hemorrhagic fever in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few available countermeasures, such as antiviral drugs or vaccines. Moreover, the fact that animal models are not readily accessible and the fact that mostly laboratory viruses, which have been passaged many times after isolation, are used for studies further limits the successful development of countermeasures. In this study, we demonstrate that a human isolate of Lassa virus causes lethal infection uniformly in Hartley guinea pigs. This novel animal model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Fiebre de Lassa/mortalidad , Fiebre de Lassa/veterinaria , Virus Lassa/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Cobayas , Humanos , Virus Lassa/aislamiento & purificación , Dosificación Letal Mediana , Carga Viral
11.
Vaccine ; 37(45): 6824-6831, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31561999

RESUMEN

Lassa virus (LASV), the causative agent of Lassa fever (LF), was first identified in 1969. Since then, outbreaks in the endemic countries of Nigeria, Liberia, and Sierra Leone occur on an annual basis resulting in a case-fatality rate of 15-70% in hospitalized patients. There is currently no licensed vaccine and there are limited animal models to test vaccine efficacy. An estimated 37.7 million people are at risk of contracting LASV; therefore, there is an urgent need for the development of a safe, effective vaccine against LASV infection. The LF endemic countries are also inflicted with HIV, Ebola, and malaria infections. The safety in immunocompromised populations must be considered in LASV vaccine development. The novel adenovirus vector-based platform, Ad5 (E1-,E2b-) has been used in clinical trial protocols for treatment of immunocompromised individuals, has been shown to exhibit high stability, low safety risk in humans, and induces a strong cell-mediated and pro-inflammatory immune response even in the presence of pre-existing adenovirus immunity. To this nature, our lab has developed an Ad5 (E1-,E2b-) vector-based vaccine expressing the LASV-NP or LASV-GPC. We found that guinea pigs vaccinated with two doses of Ad5 (E1-,E2b-) LASV-NP and Ad5 (E1-,E2b-) LASV-GPC were protected against lethal LASV challenge. The Ad5 (E1-,E2b-) LASV-NP and LASV-GPC vaccine represents a potential vaccine candidate against LF.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Vacunas Virales/uso terapéutico , Animales , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Femenino , Cobayas , Virus Lassa/inmunología , Virus Lassa/patogenicidad , Células Vero , Vacunas Virales/inmunología
12.
Curr Opin Virol ; 37: 118-122, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31479989

RESUMEN

Lassa virus (LASV) is endemic in West Africa, causing an estimated 100000-300000 new infections and up to 5000-10000 deaths yearly. There are no vaccines and therapeutics are extremely limited. Typical case fatality rates are ∼1%, although a recent 2018 Nigerian outbreak featured an unprecedented 25.4% case fatality rate. Survivors of infection suffer a lifetime of sequelae with sudden onset sensorineural hearing loss (SNHL) being the most prevalent. The cause of this hearing loss remains unknown, and there is a critical need for further research on its mechanisms and potential therapeutics. The objective of this review is to outline the only currently available small animal model for LASV-induced hearing loss and to identify potential surrogate models.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva/virología , Fiebre de Lassa/complicaciones , África Occidental , Animales , Brotes de Enfermedades , Cobayas , Humanos , Virus Lassa/patogenicidad , Ratones , Ratones Noqueados , Factor de Transcripción STAT1/genética
13.
Cancer Growth Metastasis ; 11: 1179064418767882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662326

RESUMEN

Cancer stem cells (CSCs) are an attractive therapeutic target due to their predicted role in both metastasis and chemoresistance. One of the most commonly agreed on markers for ovarian CSCs is the cell surface protein CD133. CD133+ ovarian CSCs have increased tumorigenicity, resistance to chemotherapy, and increased metastasis. Therefore, we were interested in defining how CD133 is regulated and whether it has a role in tumor metastasis. Previously we found that overexpression of the transcription factor, ARID3B, increased the expression of PROM1 (CD133 gene) in ovarian cancer cells in vitro and in xenograft tumors. We report that ARID3B directly regulates PROM1 expression. Importantly, in a xenograft mouse model of ovarian cancer, knockdown of PROM1 in cells expressing exogenous ARID3B resulted in increased survival time compared with cells expressing ARID3B and a control short hairpin RNA. This indicated that ARID3B regulation of PROM1 is critical for tumor growth. Moreover, we hypothesized that CD133 may affect metastatic spread. Given that the peritoneal mesothelium is a major site of ovarian cancer metastasis, we explored the role of PROM1 in mesothelial attachment. PROM1 expression increased adhesion to mesothelium in vitro and ex vivo. Collectively, our work demonstrates that ARID3B regulates PROM1 adhesion to the ovarian cancer metastatic niche.

14.
Bone Res ; 6: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29581909

RESUMEN

The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin (OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We've previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca2+) dynamics. Here, by simultaneously monitoring Ca2+ and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca2+ transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles (EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1 (LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca2+ signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle. Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca2+-dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca2+ signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca2+-mediated signaling in bone adaptation.

15.
PLoS One ; 11(8): e0161468, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27537840

RESUMEN

Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors.


Asunto(s)
Linfocitos B/fisiología , Proteínas de Unión al ADN/fisiología , Animales , Células de la Médula Ósea/fisiología , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Femenino , Citometría de Flujo , Immunoblotting , Inmunoprecipitación , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Interface Focus ; 6(1): 20150071, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26855756

RESUMEN

Despite advancements in technology and science over the last century, the mechanisms underlying Wolff's law-bone structure adaptation in response to physical stimuli-remain poorly understood, limiting the ability to effectively treat and prevent skeletal diseases. A challenge to overcome in the study of the underlying mechanisms of this principle is the multiscale nature of mechanoadaptation. While there exist in silico systems that are capable of studying across these scales, experimental studies are typically limited to interpretation at a single dimension or time point. For instance, studies of single-cell responses to defined physical stimuli offer only a limited prediction of the whole bone response, while overlapping pathways or compensatory mechanisms complicate the ability to isolate critical targets in a whole animal model. Thus, there exists a need to develop experimental systems capable of bridging traditional experimental approaches and informing existing multiscale theoretical models. The purpose of this article is to review the process of mechanoadaptation and inherent challenges in studying its underlying mechanisms, discuss the limitations of traditional experimental systems in capturing the many facets of this process and highlight three multiscale experimental systems which bridge traditional approaches and cover relatively understudied time and length scales in bone adaptation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...