Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2725, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169801

RESUMEN

Bacterial replisomes often dissociate from replication forks before chromosomal replication is complete. To avoid the lethal consequences of such situations, bacteria have evolved replication restart pathways that reload replisomes onto prematurely terminated replication forks. To understand how the primary replication restart pathway in E. coli (PriA-PriB) selectively acts on replication forks, we determined the cryogenic-electron microscopy structure of a PriA/PriB/replication fork complex. Replication fork specificity arises from extensive PriA interactions with each arm of the branched DNA. These interactions reshape the PriA protein to create a pore encircling single-stranded lagging-strand DNA while also exposing a surface of PriA onto which PriB docks. Together with supporting biochemical and genetic studies, the structure reveals a switch-like mechanism for replication restart initiation in which restructuring of PriA directly couples replication fork recognition to PriA/PriB complex formation to ensure robust and high-fidelity replication re-initiation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Bacteriano/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834510

RESUMEN

Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.


Asunto(s)
Receptores sigma , Esfingosina , Animales , Esfingolípidos , Ceramidas , Mamíferos/metabolismo , Receptor Sigma-1
3.
PLoS One ; 17(4): e0266031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482735

RESUMEN

Genome maintenance is an essential process in all cells. In prokaryotes, the RadD protein is important for survival under conditions that include DNA-damaging radiation. Precisely how RadD participates in genome maintenance remains unclear. Here we present a high-resolution X-ray crystal structure of ADP-bound Escherichia coli RadD, revealing a zinc-ribbon element that was not modelled in a previous RadD crystal structure. Insights into the mode of nucleotide binding and additional structure refinement afforded by the new RadD model will help to drive investigations into the activity of RadD as a genome stability and repair factor.


Asunto(s)
Proteínas de Escherichia coli , Adenosina Difosfato/metabolismo , Reparación del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Rayos X , Zinc/metabolismo
4.
mBio ; 12(6): e0275321, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724814

RESUMEN

IscR is a global transcription factor that regulates Fe-S cluster homeostasis and other functions in Escherichia coli by either activating or repressing transcription. While the interaction of IscR with its DNA sites has been studied, less is known about the mechanism of IscR regulation of transcription. Here, we show that IscR recruits RNA polymerase to an activated promoter and that IscR binding compensates for the lack of an optimal RNA polymerase σ70 -35 promoter element. We also find that the position of the -35 promoter element within the IscR DNA site impacts whether IscR activates or represses transcription. RNA polymerase binding at a distally positioned -35 element within the IscR site results in IscR activation. Molecular modeling suggests that this position of the -35 element allows IscR and RNA polymerase to bind to the promoter from opposite faces of the helix. Shifting the -35 element 1 nucleotide upstream within the IscR binding site results in IscR repression and a steric clash of IscR and RNA polymerase binding in the models. We propose that the sequence similarity of the IscR binding site with the -35 element is an important feature in allowing plasticity in the mechanism of IscR regulation. IMPORTANCE Transcription regulation is a key process in all living organisms, involving a myriad of transcription factors. In E. coli, the regulator of the iron-sulfur cluster biogenesis pathway, IscR, acts as a global transcription factor, activating the transcription of some pathways and repressing others. The mechanism by which IscR is able to activate and repress from a similar sequence space within bacterial promoter elements was not known. In this work, we show that subtle changes in the position of the σ70 -35 promoter element within an IscR binding site can switch the role of IscR from an activator to a repressor. Our work provides insights as to how the IscR site might have evolved around the -35 promoter element to allow a single transcription factor to differentially regulate promoters.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Factores de Transcripción/química , Factores de Transcripción/genética
5.
J Mol Biol ; 432(14): 4108-4126, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32446804

RESUMEN

The alarmones pppGpp and ppGpp mediate starvation response and maintain purine homeostasis to protect bacteria. In the bacterial phyla Firmicutes and Bacteroidetes, xanthine phosphoribosyltransferase (XPRT) is a purine salvage enzyme that produces the nucleotide XMP from PRPP and xanthine. Combining structural, biochemical, and genetic analyses, we show that pppGpp and ppGpp, as well as a third newly identified alarmone pGpp, all directly interact with XPRT from the Gram-positive bacterium Bacillus subtilis and inhibit XPRT activity by competing with its substrate PRPP. Structural analysis reveals that ppGpp binds the PRPP binding motif within the XPRT active site. This motif is present in another (p)ppGpp target, the purine salvage enzyme HPRT, suggesting evolutionary conservation in different enzymes. However, XPRT oligomeric interaction is distinct from HPRT in that XPRT forms a symmetric dimer with two (p)ppGpp binding sites at the dimer interface. (p)ppGpp's interaction with an XPRT bridging loop across the interface results in XPRT cooperatively binding (p)ppGpp. Also, XPRT displays differential regulation by the alarmones as it is potently inhibited by both ppGpp and pGpp, but only modestly by pppGpp. Lastly, we demonstrate that the alarmones are necessary for protecting GTP homeostasis against excess environmental xanthine in B. subtilis, suggesting that regulation of XPRT is key for regulating the purine salvage pathway.


Asunto(s)
Guanosina Pentafosfato/genética , Guanosina Tetrafosfato/genética , Pentosiltransferasa/genética , Purinas/metabolismo , Bacillus subtilis/enzimología , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Nucleótidos/genética , Unión Proteica/genética
6.
Elife ; 82019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31552824

RESUMEN

The alarmone (p)ppGpp regulates diverse targets, yet its target specificity and evolution remain poorly understood. Here, we elucidate the mechanism by which basal (p)ppGpp inhibits the purine salvage enzyme HPRT by sharing a conserved motif with its substrate PRPP. Intriguingly, HPRT regulation by (p)ppGpp varies across organisms and correlates with HPRT oligomeric forms. (p)ppGpp-sensitive HPRT exists as a PRPP-bound dimer or an apo- and (p)ppGpp-bound tetramer, where a dimer-dimer interface triggers allosteric structural rearrangements to enhance (p)ppGpp inhibition. Loss of this oligomeric interface results in weakened (p)ppGpp regulation. Our results reveal an evolutionary principle whereby protein oligomerization allows evolutionary change to accumulate away from a conserved binding pocket to allosterically alter specificity of ligand interaction. This principle also explains how another (p)ppGpp target GMK is variably regulated across species. Since most ligands bind near protein interfaces, we propose that this principle extends to many other protein-ligand interactions.


Asunto(s)
Bacillus subtilis/enzimología , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hipoxantina Fosforribosiltransferasa/antagonistas & inhibidores , Regulación Alostérica , Cristalografía por Rayos X , Escherichia coli/enzimología , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Conformación Proteica , Multimerización de Proteína
7.
PLoS One ; 14(7): e0219664, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31310642

RESUMEN

Phenylalanine and cysteine comprise common miss-sense variants (i.e., single nucleotide polymorphisms [SNPs]) at amino acid position 254 of the human indole(ethyl)amine-N-methyltransferase (hINMT). The phenylalanine variant, which occurs in linkage disequilibrium with two 3' UTR SNPs, has been reported to associate with elevated urine levels of trimethylselenonium (TMSe), the Se-methylated product of volatile dimethylselenide. hINMT allozymes expressing either cysteine (254C) or phenylalanine (254F) at position 254 were compared for enzyme activity (i.e., Km and Vmax) towards the INMT substrates tryptamine, dimethylsulfide (DMS) and dimethylselenide (DMSe) in vitro. The SNP 254C had a higher Vmax for DMS and tryptamine in the presence of reducing agent than in its absence. Conversely, Vmax for 254F was insensitive to the presence or absence of reducing agent for these substrates. SNP 254F showed a lower Km for tryptamine in the absence of reducing agent than 254C. No statistically significant difference in Vmax or Km was observed between 254C and 254F allozymes in the presence of reducing agent for DMSe, The Km values for DMSe methylation were about 10-fold (254C) or 6-fold (254F) more favorable than for tryptamine methylation with reducing agent present. These findings indicated that: 1) That phenylalanine at position 254 renders hINMT methylation of substrates DMS and tryptamine insensitive to a non reducing environment. 2) That human INMT harbors significant thioether-S-methyltransferase (TEMT) activity with a higher affinity for DMSe than tryptamine, 3) The reduction of a 44C/254C disulfide bond in hINMT that increases Vmax is proposed.


Asunto(s)
Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Compuestos de Organoselenio/química , Sulfuros/química , Triptaminas/química , Alelos , Cristalografía por Rayos X , Disulfuros , Escherichia coli , Humanos , Isoenzimas , Cinética , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Conformación Proteica
8.
J Am Chem Soc ; 141(19): 7660-7664, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31045358

RESUMEN

Phenol-soluble modulin α3 (PSMα3) is a cytotoxic peptide secreted by virulent strains of Staphylococcus aureus. We used a stereochemical strategy to examine the mechanism of PSMα3-mediated toxicity. One hypothesis is that PSMα3 toxicity requires fibril formation; an alternative is that toxicity is caused by soluble forms of PSMα3, possibly oligomeric. We find that the unnatural enantiomer (D residues) displays cytotoxicity comparable to that of L-PSMα3. Racemic PSMα3 is similarly toxic to enantiopure PSMα3 (L or D) under some conditions, but the toxicity is lost under conditions that cause racemic PSMα3 to aggregate. A crystal structure of racemic PSMα3-NH2 displays an α-helical secondary structure and a packing pattern that is reminiscent of the cross-α arrangement recently discovered in crystals of L-PSMα3. Our data suggest that the cytotoxicity of PSMα3 does not depend on stereospecific engagement of a target protein or other chiral macromolecule, an observation that supports a mechanism based on membrane disruption. In addition, our data support the hypothesis that toxicity is exerted by a soluble form rather than an insoluble fibrillar form.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidad , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Estereoisomerismo , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 115(39): E9075-E9084, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201718

RESUMEN

DNA replication restart, the essential process that reinitiates prematurely terminated genome replication reactions, relies on exquisitely specific recognition of abandoned DNA replication-fork structures. The PriA DNA helicase mediates this process in bacteria through mechanisms that remain poorly defined. We report the crystal structure of a PriA/replication-fork complex, which resolves leading-strand duplex DNA bound to the protein. Interaction with PriA unpairs one end of the DNA and sequesters the 3'-most nucleotide from the nascent leading strand into a conserved protein pocket. Cross-linking studies reveal a surface on the winged-helix domain of PriA that binds to parental duplex DNA. Deleting the winged-helix domain alters PriA's structure-specific DNA unwinding properties and impairs its activity in vivo. Our observations lead to a model in which coordinated parental-, leading-, and lagging-strand DNA binding provide PriA with the structural specificity needed to act on abandoned DNA replication forks.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Biológicos , Cristalografía por Rayos X , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
10.
J Biol Chem ; 293(6): 1994-2005, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279331

RESUMEN

Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist.


Asunto(s)
Quinurenina/química , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Sitios de Unión , Cinética , Ligandos , Ratones , Estructura Molecular , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética
11.
Nat Commun ; 8(1): 2272, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273778

RESUMEN

Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Dominio Catalítico , Cristalización , Células HEK293 , Holoenzimas , Humanos , Metilación , Ratones , Chaperonas Moleculares , Transducción de Señal
12.
Antioxid Redox Signal ; 26(2): 49-69, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393705

RESUMEN

AIM: The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. RESULTS: A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2ß/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49-69.


Asunto(s)
Antocianinas/farmacología , Antioxidantes/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Psoriasis/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Administración Tópica , Aminoquinolinas/efectos adversos , Animales , Antocianinas/administración & dosificación , Antocianinas/química , Antioxidantes/administración & dosificación , Antioxidantes/química , Sitios de Unión , Biopsia , Quimiotaxis de Leucocito , Citocinas/metabolismo , Modelos Animales de Enfermedad , Imiquimod , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/etiología , Psoriasis/patología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo
13.
J Bacteriol ; 198(8): 1218-29, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26833410

RESUMEN

UNLABELLED: Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE: BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Comamonadaceae/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Comamonadaceae/genética , Regulación Bacteriana de la Expresión Génica , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
14.
Front Mol Biosci ; 2: 65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26636092

RESUMEN

Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in native phytochromes, presumably due to the proximity of its backbone carbonyl to the pyrrole ring nitrogens of the biliverdin (BV) chromophore as well as the size and charge of the side chain. We hypothesized that the polar interaction network formed by the charged side chain may contribute to the decay of the excited state via proton transfer. Thus, we chose to further probe the role of this amino acid by removing all possibility for polar interactions with its carboxylate side chain by incorporating leucine instead. The resultant fluorescent protein, WiPhy2, maintains BV binding, monomeric status, and long maximum excitation wavelength while minimizing undesirable protoporphyrin IXα binding in cells. A crystal structure and time-resolved fluorescence spectroscopy reveal that water near the BV chromophore is excluded and thus validate our hypothesis that removal of polar interactions leads to enhanced fluorescence by increasing the lifetime of the excited state. This new phytofluor maintains its fluorescent properties over a broad pH range and does not suffer from photobleaching. WiPhy2 achieves the best compromise to date between high fluorescence quantum yield and long illumination wavelength in this class of fluorescent proteins.

15.
J Am Chem Soc ; 137(37): 11884-7, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26369301

RESUMEN

Quasiracemic crystallography has been used to explore the significance of homochiral and heterochiral associations in a set of host-defense peptide derivatives. The previously reported racemic crystal structure of a magainin 2 derivative displayed a homochiral antiparallel dimer association featuring a "phenylalanine zipper" notable for the dual roles of phenylalanines in mediating dimerization and formation of an exposed hydrophobic swath. This motif is seen as well in two new quasiracemate crystals that contain the d form of the magainin 2 derivative along with an l-peptide in which one Ala has been replaced by a ß-amino acid residue. This structural trend supports the hypothesis that the Phe zipper motif has functional significance.


Asunto(s)
Magaininas/química , Fenilalanina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estereoisomerismo
16.
Mol Cell ; 57(4): 735-749, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25661490

RESUMEN

The nucleotide (p)ppGpp mediates bacterial stress responses, but its targets and underlying mechanisms of action vary among bacterial species and remain incompletely understood. Here, we characterize the molecular interaction between (p)ppGpp and guanylate kinase (GMK), revealing the importance of this interaction in adaptation to starvation. Combining structural and kinetic analyses, we show that (p)ppGpp binds the GMK active site and competitively inhibits the enzyme. The (p)ppGpp-GMK interaction prevents the conversion of GMP to GDP, resulting in GMP accumulation upon amino acid downshift. Abolishing this interaction leads to excess (p)ppGpp and defective adaptation to amino acid starvation. A survey of GMKs from phylogenetically diverse bacteria shows that the (p)ppGpp-GMK interaction is conserved in members of Firmicutes, Actinobacteria, and Deinococcus-Thermus, but not in Proteobacteria, where (p)ppGpp regulates RNA polymerase (RNAP). We propose that GMK is an ancestral (p)ppGpp target and RNAP evolved more recently as a direct target in Proteobacteria.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Evolución Molecular , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanilato-Quinasas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , Guanosina Trifosfato/metabolismo , Guanilato-Quinasas/química , Modelos Biológicos , Especificidad de la Especie , Estrés Fisiológico
17.
Cell Rep ; 8(6): 1704-1713, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25242325

RESUMEN

Metadherin (MTDH) and Staphylococcal nuclease domain containing 1 (SND1) are overexpressed and interact in diverse cancer types. The structural mechanism of their interaction remains unclear. Here, we determined the high-resolution crystal structure of MTDH-SND1 complex, which reveals an 11-residue MTDH peptide motif occupying an extended protein groove between two SN domains (SN1/2), with two MTDH tryptophan residues nestled into two well-defined pockets in SND1. At the opposite side of the MTDH-SND1 binding interface, SND1 possesses long protruding arms and deep surface valleys that are prone to binding with other partners. Despite the simple binding mode, interactions at both tryptophan-binding pockets are important for MTDH and SND1's roles in breast cancer and for SND1 stability under stress. Our study reveals a unique mode of interaction with SN domains that dictates cancer-promoting activity and provides a structural basis for mechanistic understanding of MTDH-SND1-mediated signaling and for exploring therapeutic targeting of this complex.


Asunto(s)
Moléculas de Adhesión Celular/química , Proteínas Nucleares/química , Animales , Sitios de Unión , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Endonucleasas , Humanos , Enlace de Hidrógeno , Proteínas de la Membrana , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Electricidad Estática
18.
Cell Res ; 24(2): 190-203, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24100351

RESUMEN

Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Células HeLa , Humanos , Cinética , Manganeso/química , Manganeso/metabolismo , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
19.
Cell Res ; 23(7): 931-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23752926

RESUMEN

The B″/PR72 family of protein phosphatase 2A (PP2A) is an important PP2A family involved in diverse cellular processes, and uniquely regulated by calcium binding to the regulatory subunit. The PR70 subunit in this family interacts with cell division control 6 (Cdc6), a cell cycle regulator important for control of DNA replication. Here, we report crystal structures of the isolated PR72 and the trimeric PR70 holoenzyme at a resolution of 2.1 and 2.4 Å, respectively, and in vitro characterization of Cdc6 dephosphorylation. The holoenzyme structure reveals that one of the PR70 calcium-binding motifs directly contacts the scaffold subunit, resulting in the most compact scaffold subunit conformation among all PP2A holoenzymes. PR70 also binds distinctively to the catalytic subunit near the active site, which is required for PR70 to enhance phosphatase activity toward Cdc6. Our studies provide a structural basis for unique regulation of B″/PR72 holoenzymes by calcium ions, and suggest the mechanisms for precise control of substrate specificity among PP2A holoenzymes.


Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Animales , Cristalografía por Rayos X , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Fosforilación , Especificidad por Sustrato
20.
J Biol Chem ; 288(24): 17420-31, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23640880

RESUMEN

General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428-431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.


Asunto(s)
Anestésicos Intravenosos/metabolismo , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos Activados por Ligandos/metabolismo , Propofol/metabolismo , Regulación Alostérica , Sustitución de Aminoácidos , Anestésicos Intravenosos/farmacología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cianobacterias , Cisteína/química , Cisteína/genética , Concentración de Iones de Hidrógeno , Cinética , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Potenciales de la Membrana/efectos de los fármacos , Metilmetanosulfonato/análogos & derivados , Metilmetanosulfonato/química , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Propofol/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína , Homología Estructural de Proteína , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...