Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 349: 113954, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34922908

RESUMEN

The discovery and development of novel antiseizure drugs (ASDs) that are effective in controlling pharmacoresistant spontaneous recurrent seizures (SRSs) continues to represent a significant unmet clinical need. The Epilepsy Therapy Screening Program (ETSP) has undertaken efforts to address this need by adopting animal models that represent the salient features of human pharmacoresistant epilepsy and employing these models for preclinical testing of investigational ASDs. One such model that has garnered increased interest in recent years is the mouse variant of the Intra-Amygdala Kainate (IAK) microinjection model of mesial temporal lobe epilepsy (MTLE). In establishing a version of this model, several methodological variables were evaluated for their effect(s) on pertinent quantitative endpoints. Although administration of a benzodiazepine 40 min after kainate (KA) induced status epilepticus (SE) is commonly used to improve survival, data presented here demonstrates similar outcomes (mortality, hippocampal damage, latency periods, and 90-day SRS natural history) between mice given midazolam and those that were not. Using a version of this model that did not interrupt SE with a benzodiazepine, a 90-day natural history study was performed and survival, latency periods, SRS frequencies and durations, and SRS clustering data were quantified. Finally, an important step towards model adoption is to assess the sensitivities or resistances of SRSs to a panel of approved and clinically used ASDs. Accordingly, the following ASDs were evaluated for their effects on SRSs in these mice: phenytoin (20 mg/kg, b.i.d.), carbamazepine (30 mg/kg, t.i.d.), valproate (240 mg/kg, t.i.d.), diazepam (4 mg/kg, b.i.d.), and phenobarbital (25 and 50 mg/kg, b.i.d.). Valproate, diazepam, and phenobarbital significantly attenuated SRS frequency relative to vehicle controls at doses devoid of observable adverse behavioral effects. Only diazepam significantly increased seizure freedom. Neither phenytoin nor carbamazepine significantly altered SRS frequency or freedom under these experimental conditions. These data demonstrate that SRSs in this IAK model of MTLE are pharmacoresistant to two representative sodium channel-inhibiting ASDs (phenytoin and carbamazepine) and partially sensitive to GABA receptor modulating ASDs (diazepam and phenobarbital) or a mixed-mechanism ASD (valproate). Accordingly, this model is being incorporated into the NINDS-funded ETSP testing platform for treatment resistant epilepsy.


Asunto(s)
Amígdala del Cerebelo , Anticonvulsivantes/uso terapéutico , Convulsivantes , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Ácido Kaínico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Animales , Conducta Animal , Convulsivantes/administración & dosificación , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Epilepsia Refractaria/inducido químicamente , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/psicología , Ácido Kaínico/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Convulsiones/psicología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
2.
Epilepsia ; 59(11): 2035-2048, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30328622

RESUMEN

OBJECTIVE: Approximately 30% of patients with epilepsy are refractory to existing antiseizure drugs (ASDs). Given that the properties of the central nervous systems of these patients are likely to be altered due to their epilepsy, tissues from rodents that have undergone epileptogenesis might provide a therapeutically relevant disease substrate for identifying compounds capable of attenuating pharmacoresistant seizures. To facilitate the development of such a model, this study describes the effects of classical glutamate receptor antagonists and 20 ASDs on recurrent epileptiform discharges (REDs) in brain slices derived from the kainate-induced status epilepticus model of temporal lobe epilepsy (KA-rats). METHODS: Horizontal brain slices containing the medial entorhinal cortex (mEC) were prepared from KA-rats, and REDs were recorded from the superficial layers. 6-cyano-7-nitroquinoxaline-2,3-dione, (2R)-amino-5-phosphonovaleric acid, tetrodotoxin, or ASDs were bath applied for 20 minutes. Concentration-dependent effects and half maximal effective concentration values were determined for RED duration, frequency, and amplitude. RESULTS: ASDs targeting sodium and potassium channels (carbamazepine, eslicarbazepine, ezogabine, lamotrigine, lacosamide, phenytoin, and rufinamide) attenuated REDs at concentrations near their average therapeutic plasma concentrations. γ-aminobutyric acid (GABA)ergic synaptic transmission-modulating ASDs (clobazam, midazolam, phenobarbital, stiripentol, tiagabine, and vigabatrin) attenuated REDs only at higher concentrations and, in some cases, prolonged RED durations. ASDs with other/mixed mechanisms of action (bumetanide, ethosuximide, felbamate, gabapentin, levetiracetam, topiramate, and valproate) and glutamate receptor antagonists weakly or incompletely inhibited RED frequency, increased RED duration, or had no significant effects. SIGNIFICANCE: Taken together, these data suggest that epileptiform activity recorded from the superficial layers of the mEC in slices obtained from KA-rats is differentially sensitive to existing ASDs. The different sensitivities of REDs to these ASDs may reflect persistent molecular, cellular, and/or network-level changes resulting from disease. These data are expected to serve as a foundation upon which future therapeutics may be differentiated and assessed for potentially translatable efficacy in patients with refractory epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Corteza Entorrinal/efectos de los fármacos , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Agonistas de Aminoácidos Excitadores/toxicidad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Kaínico/toxicidad , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Corteza Entorrinal/patología , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
3.
Epilepsia ; 55(2): 214-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24447124

RESUMEN

OBJECTIVE: Cognitive comorbidities are increasingly recognized as an equal (or even more disabling) aspect of epilepsy. In addition, the actions of some antiseizure drugs (ASDs) can impact learning and memory. Accordingly, the National Institute of Neurological Disorders and Stroke (NINDS) epilepsy research benchmarks call for the implementation of standardized protocols for screening ASDs for their amelioration or exacerbation of cognitive comorbidities. Long-term potentiation (LTP) is a widely used model for investigating synaptic plasticity and its relationship to learning and memory. Although the effects of some ASDs on LTP have been examined, none of these studies employed physiologically relevant induction stimuli such as theta-burst stimulation (TBS). To systematically evaluate the effects of multiple ASDs in the same preparation using physiologically relevant stimulation protocols, we examined the effects of a broad panel of existing ASDs on TBS-induced LTP in area CA1 of in vitro brain slices, prepared in either normal or sucrose-based artificial cerebrospinal fluid (ACSF), from C57BL/6 mice. METHODS: Coronal brain slices containing the dorsal hippocampus were made using either standard or sucrose-based ACSF. Recordings were obtained from four slices at a time using the Scientifica Slicemaster high throughput recording system. Slices exposed to ASDs were paired with slices from the opposite hemisphere that served as controls. Field excitatory postsynaptic potentials (fEPSPs) were recorded, and all ASDs were applied to slices by bath perfusion for 20 min prior to the induction stimulus. LTP was induced by TBS or by high-frequency stimulation (HFS). The following ASDs were examined: 100 µM phenobarbital (PB), 80 µM phenytoin (PHT), 50 µM carbamazepine (CBZ), 600 µM valproate (VPA), 60 µM topiramate (TPM), 60 µM lamotrigine (LTG), 100 µM levetiracetam (LEV), 10 µM ezogabine (EZG), and 30 µM tiagabine (TGB). RESULTS: Among voltage-gated sodium channel inhibitors, CBZ significantly attenuated TBS-induced LTP, PHT attenuated both TBS-induced LTP and post-tetanic potentiation (PTP), and LTG failed to affect LTP but did attenuate PTP. ASDs that modulate γ-aminobutyric acid (GABA)ergic synaptic transmission, such as PB and TGB, significantly attenuated LTP in brain slices prepared in sucrose-based ACSF but not standard ACSF. Third generation ASDs, such as LEV and TPM, did not affect LTP in ACSF- or sucrose-prepared brain slices. Although EZG failed to affect LTP, it did significantly attenuate PTP under both slicing conditions. VPA failed to affect LTP in area CA1, both in C57BL/6 mice and Sprague-Dawley rats, using TBS or HFS. However, VPA did attenuate TBS-induced LTP in the dentate gyrus (DG). SIGNIFICANCE: The results of experiments describe herein provide a comprehensive summary of the effects of many commonly used ASDs on short- and long-term synaptic plasticity while, for the first time, using physiologically relevant LTP induction protocols and slice preparations from mice. Furthermore, methodologic variables, such as brain slice preparation protocols, were explored. These results provide comparative knowledge of ASD effects on synaptic plasticity in the mouse hippocampus and may ultimately contribute to an understanding of the differences in the cognitive side effect profiles of ASDs and the prediction of cognitive dysfunction associated with novel investigational ASDs.


Asunto(s)
Anticonvulsivantes/farmacología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Ritmo Teta/fisiología , Animales , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ritmo Teta/efectos de los fármacos
4.
Neurotoxicology ; 32(4): 392-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21396956

RESUMEN

Glutamate induced excitotoxic injury through over-activation of N-methyl-D-aspartate receptors (NMDARs) plays a critical role in the development of many neurodegenerative diseases. The present study was undertaken to evaluate the role of CGX-1007 (Conantokin G) as a neuroprotective agent against NMDA-induced excitotoxicity. Conantokin G, a cone snail peptide isolated from Conus geographus is reported to selectively inhibit NR2B containing NMDARs with high specificity and is shown to have potent anticonvulsant and antinociceptive effects. CGX-1007 significantly reduced the excitotoxic cell death induced by NMDA in organotypic hippocampal brain slice cultures in a concentration-dependent manner. In contrast, ifenprodil, another NR2B specific antagonist failed to offer neuroprotection against NMDA-induced excitotoxicity. We further determined that the neuroprotection observed is likely due to the action of CGX-1007 at multiple NMDA receptor subtypes. In a series of electrophysiology experiments, CGX-1007 inhibited NMDA-gated currents in human embryonic kidney (HEK) 293 cells expressing NMDA receptors containing either NR1a/NR2B or NR1a/NR2A subunit combinations. CGX-1007 produced a weak inhibition at NR1a/NR2C receptors, whereas it had no effect on NR1a/NR2D receptors. Further, the inhibition of NMDA receptors by CGX-1007 was voltage-dependent with greater inhibition seen at hyperpolarized membrane potentials. The voltage-dependence of CGX-1007 activity was also observed in recordings of NMDA-gated currents evoked in native receptors expressed in cortical neurons in culture. Based on our results, we conclude that CGX-1007 is a potent neuroprotective agent that acts as an antagonist at both NR2A and NR2B containing receptors.


Asunto(s)
Conotoxinas/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Citoprotección , Relación Dosis-Respuesta a Droga , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Potenciales de la Membrana , Ratones , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Transfección
5.
Epilepsy Res ; 79(1): 6-13, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18262393

RESUMEN

Disruptions in GABAergic neurotransmission have been implicated in numerous CNS disorders, including epilepsy and neuropathic pain. Selective inhibition of neuronal and glial GABA transporter subtypes may offer unique therapeutic options for regaining balance between inhibitory and excitatory systems. The ability of two GABA transport inhibitors to modulate inhibitory tone via inhibition of mGAT1 (tiagabine) or mGAT2/BGT-1 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), also known as EF1502) was evaluated using an in vitro model of spontaneous interictal-like bursting (SB). SBs were recorded extracellularly in combined mEC-HC horizontal brain slices (400 microm; 31+/-1 degrees C) obtained from KA-treated rats. Slice recordings demonstrated that EF1502 exhibited a concentration-dependent reduction in SB frequency. EF1502 significantly reduced SB rate to 32% of control at the 30 microM concentration, while reducing the area and duration of SB activity to 60% and 46% of control, respectively, at the 10 microM concentration. In contrast, the GAT1 selective inhibitor tiagabine (3, 10, and 30 microM) was unable to significantly reduce the frequency of SB activity in the mEC, despite significantly reducing both the duration (51% of control) and area (58% of control) of the SB at concentrations as low as 3 microM. The ability of EF1502, but not tiagabine, to inhibit SBs in the mEC suggests that this in vitro model of pharmacoresistant SB activity is useful to differentiate between novel anticonvulsants with similar mechanisms of action and suggests a therapeutic potential for non-GAT1 transport inhibitors.


Asunto(s)
Proteínas Portadoras/metabolismo , Corteza Entorrinal/fisiopatología , Potenciales Evocados/fisiología , Estado Epiléptico/patología , Animales , Proteínas Portadoras/antagonistas & inhibidores , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/efectos de la radiación , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/efectos de la radiación , Agonistas del GABA/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática , Técnicas In Vitro , Isoxazoles/farmacología , Ácido Kaínico , Masculino , Ácidos Nipecóticos/farmacología , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Tiagabina
6.
Epilepsy Res ; 74(2-3): 97-106, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17395429

RESUMEN

Hyperexcitability in the medial entorhinal cortex-hippocampal (mEC-HC) circuit in the initial weeks after prolonged seizure activity may contribute to the epileptogenic process in animal models of temporal lobe epilepsy (TLE). The present study examined combined mEC-HC slices (400 microm) using field potential recordings 1-2 weeks following the multiple administration, low-dose kainic acid (KA) model of TLE [Hellier, J.L., Patrylo, P.R., Buckmaster, P.S., Dudek, F.E., 1998. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31, 73-84]. Field potential recordings in slices from KA-treated rats demonstrated hallmarks of hyperexcitability in the mEC and in the CA1 and CA3 cell body regions of the HC. Spontaneous burst (SB) activity was observed under baseline recording conditions in the mEC of several slices from KA-treated rats, but not in the slices from saline-treated control rats. Elevating ACSF [K(+)](o) (6mM) in the presence of picrotoxin (50 microM) increased SB rates in all slices tested. However, there was a significantly shorter latency to onset of bursting and prolonged evoked response durations in layer II of the mEC of slices from KA-treated rats versus those from controls. Neither carbamazepine (CBZ) nor phenytoin (PHT) abolished SB activity in slices from KA-treated rats; whereas, SB activity in slices from control rats was dose-dependently reduced at 100 microM CBZ. In contrast, the novel anticonvulsant retigabine (RGB) dramatically reduced SB frequency in both control and KA-treated groups. The hyperexcitability observed in combined mEC-HC brain slices from KA-treated rats suggests that the mEC, as well as the HC, may contribute to the epileptogenic process after KA-induced seizure activity. This model may provide an efficient, flexible in vitro paradigm for differentiating novel AEDs in a model of pharmacoresistant bursting.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Carbamatos/farmacología , Carbamazepina/uso terapéutico , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/patología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Fenilendiaminas/farmacología , Fenitoína/uso terapéutico , Animales , Recuento de Células , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos , Electrofisiología , Epilepsia del Lóbulo Temporal/inducido químicamente , Potenciales Evocados/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores , Hipocampo/patología , Ketamina , Masculino , Red Nerviosa/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...