Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 32(3): 614-630.e5, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35081332

RESUMEN

Microtubules are essential to neuron shape and function. Acetylation of tubulin has the potential to directly tune the behavior and function of microtubules in cells. Although proteomic studies have identified several acetylation sites in α-tubulin, the effects of acetylation at these sites remains largely unknown. This includes the highly conserved residue lysine 394 (K394), which is located at the αß-tubulin dimer interface. Using a fly model, we show that α-tubulin K394 is acetylated in the nervous system and is an essential residue. We found that an acetylation-blocking mutation in endogenous α-tubulin, K394R, perturbs the synaptic morphogenesis of motoneurons and reduces microtubule stability. Intriguingly, the K394R mutation has opposite effects on the growth of two functionally and morphologically distinct motoneurons, revealing neuron-type-specific responses when microtubule stability is altered. Eliminating the deacetylase HDAC6 increases K394 acetylation, and the over-expression of HDAC6 reduces microtubule stability similar to the K394R mutant. Thus, our findings implicate α-tubulin K394 and its acetylation in the regulation of microtubule stability and suggest that HDAC6 regulates K394 acetylation during synaptic morphogenesis.


Asunto(s)
Terminales Presinápticos , Tubulina (Proteína) , Acetilación , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Microtúbulos/metabolismo , Terminales Presinápticos/metabolismo , Proteómica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Curr Biol ; 30(4): 610-623.e5, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31928876

RESUMEN

Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery. We hypothesized that α-tubulin acetyltransferase (αTAT), which both stabilizes long-lived microtubules against mechanical stress via acetylation and has been implicated in promoting microtubule dynamics, could play a role in this process. Using the Drosophila neuromuscular junction as a model, we found that non-enzymatic dαTAT activity limits the growth of synaptic boutons by affecting dynamic, but not stable, microtubules. Loss of dαTAT results in the formation of ectopic boutons. These ectopic boutons can be similarly suppressed by resupplying enzyme-inactive dαTAT or by treatment with a low concentration of the microtubule-targeting agent vinblastine, which acts to suppress microtubule dynamics. Biophysical reconstitution experiments revealed that non-enzymatic αTAT1 activity destabilizes dynamic microtubules but does not substantially impact the stability of long-lived microtubules. Further, during microtubule growth, non-enzymatic αTAT1 activity results in increasingly extended tip structures, consistent with an increased rate of acceleration of catastrophe frequency with microtubule age, perhaps via tip structure remodeling. Through these mechanisms, αTAT enriches for stable microtubules at the expense of dynamic ones. We propose that the specific suppression of dynamic microtubules by non-enzymatic αTAT activity regulates the remodeling of microtubule networks during synaptic bouton development.


Asunto(s)
Acetiltransferasas/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Animales , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/metabolismo
3.
J Cell Sci ; 130(24): 4120-4131, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29122984

RESUMEN

Microtubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules. However, the cellular role of microtubule acetylation remains controversial. To resolve how microtubule acetylation might affect neuronal morphogenesis, we mutated endogenous α-tubulin in vivo using a new Drosophila strain that facilitates the rapid knock-in of designer αTub84B alleles (the predominant α-tubulin-encoding gene in flies). Leveraging our new strain, we found that microtubule acetylation, as well as polyglutamylation and (de)tyrosination, is not essential for survival. However, we found that dendrite branch refinement in sensory neurons relies on α-tubulin K40. Mutagenesis of K40 reveals moderate yet significant changes in dendritic lysosome transport, microtubule polymerization and Futsch protein distribution in dendrites but not in axons. Our studies point to an unappreciated role for α-tubulin K40 and acetylation in dendrite morphogenesis. While our results are consistent with the idea that acetylation tunes microtubule function within neurons, they also suggest there may be an acetylation-independent requirement for α-tubulin K40.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Dendritas/genética , Neurogénesis/genética , Células Receptoras Sensoriales/metabolismo , Tubulina (Proteína)/genética , Acetilación , Animales , Dendritas/patología , Drosophila melanogaster , Lisina/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Morfogénesis/genética , Mutación , Procesamiento Proteico-Postraduccional , Células Receptoras Sensoriales/patología , Tubulina (Proteína)/metabolismo
4.
RNA ; 23(11): 1636-1647, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768715

RESUMEN

A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.


Asunto(s)
Redes Reguladoras de Genes , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Modelos Moleculares , Nucleotidiltransferasas/metabolismo , Unión Proteica , ARN de Hongos/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Nat Methods ; 12(12): 1163-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26524240

RESUMEN

Protein-RNA networks are ubiquitous and central in biological control. We present an approach termed RNA Tagging that enables the user to identify protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or cross-linking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA via high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The results showed that although RNA-binding proteins productively bind specific RNAs to control their function, they also 'sample' RNAs without exerting a regulatory effect. We used the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. RNA Tagging is well suited to detect and analyze protein-RNA networks in vivo.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3'/genética , Sitios de Unión , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...