Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Structure ; 32(8): 1079-1089.e6, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38810648

RESUMEN

Influenza causes significant morbidity and mortality. As an alternative approach to current seasonal vaccines, the computationally optimized broadly reactive antigen (COBRA) platform has been previously applied to hemagglutinin (HA). This approach integrates wild-type HA sequences into a single immunogen to expand the breadth of accessible antibody epitopes. Adding to previous studies of H1, H3, and H5 COBRA HAs, we define the structural features of another H1 subtype COBRA, X6, that incorporates HA sequences from before and after the 2009 H1N1 influenza pandemic. We determined structures of this antigen alone and in complex with COBRA-specific as well as broadly reactive and functional antibodies, analyzing its antigenicity. We found that X6 possesses features representing both historic and recent H1 HA strains, enabling binding to both head- and stem-reactive antibodies. Overall, these data confirm the integrity of broadly reactive antibody epitopes of X6 and contribute to design efforts for a next-generation vaccine.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Modelos Moleculares , Antígenos Virales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Epítopos/inmunología , Epítopos/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/química , Gripe Humana/inmunología , Gripe Humana/virología , Cristalografía por Rayos X , Unión Proteica
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293237

RESUMEN

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

3.
Immunohorizons ; 7(10): 635-651, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819998

RESUMEN

Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.


Asunto(s)
Vacuna BNT162 , COVID-19 , Vacunas de ARNm , Humanos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , Inmunoglobulina G/inmunología , Vacunas de ARNm/inmunología , SARS-CoV-2 , Vacunas Sintéticas/inmunología , Inmunogenicidad Vacunal/inmunología , Eficacia de las Vacunas , Inmunización Secundaria , Subgrupos Linfocitarios/inmunología
4.
Commun Biol ; 6(1): 454, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185989

RESUMEN

Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and future influenza viruses. Though effective in preclinical studies, the mechanistic basis driving the broad reactivity of COBRA proteins remains to be elucidated. Here, we report the crystal structure of the COBRA HA termed P1 and identify antigenic and glycosylation properties that contribute to its immunogenicity. We further report the cryo-EM structure of the P1-elicited broadly neutralizing antibody 1F8 bound to COBRA P1, revealing 1F8 to recognize an atypical receptor binding site epitope via an unexpected mode of binding.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Humanos , Hemaglutininas , Subtipo H1N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética
5.
Cell Rep ; 42(2): 112044, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708513

RESUMEN

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.


Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , VIH-1 , Hepatitis C , Humanos , Hepacivirus , Anticuerpos Neutralizantes , SARS-CoV-2 , Anticuerpos Anti-VIH
6.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016202

RESUMEN

Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.

7.
J Proteome Res ; 21(7): 1616-1627, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653804

RESUMEN

In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.


Asunto(s)
COVID-19 , Gripe Humana , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , COVID-19/diagnóstico , Humanos , Espectrometría de Masas , SARS-CoV-2/genética
8.
J Immunol ; 209(1): 5-15, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697384

RESUMEN

Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control
9.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35632452

RESUMEN

In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cells from 13 participants who lost all circulating antibodies were differentiated into antibody secreting cells (ASCs). There was a significant recall of memory B cell ASCs in the absence of serum antibodies in 5-8 of the 10 vaccinated participants, but not in any of the 3 infected participants, suggesting a strong connection between antibody levels and the effectiveness of memory B cell recall.

10.
J Virol ; 95(23): e0237920, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523961

RESUMEN

Influenza remains one of the most contagious infectious diseases. Approximately, 25 to 50 million people suffer from influenza-like illness in the United States annually, leading to almost 1 million hospitalizations. Globally, the World Health Organization (WHO) estimates 250,000 to 500,000 mortalities associated with secondary respiratory complications due to influenza virus infection every year. Currently, seasonal vaccination represents the best countermeasure to prevent influenza virus spread and transmission in the general population. However, presently licensed influenza vaccines are about 60% effective on average, and their effectiveness varies from season to season and among age groups, as well as between different influenza subtypes within a single season. The hemagglutination inhibition (HAI) assay represents the gold standard method for measuring the functional antibody response elicited following standard-of-care vaccination, along with evaluating the efficacy of under-development influenza vaccines in both animal models and clinical trial settings. However, using the classical HAI approach, it is not possible to dissect the complexities of variable epitope recognition within a polyclonal antibody response. In this paper, we describe a straightforward competitive HAI-based method using a combination of influenza virus and recombinant hemagglutinin (HA) proteins to dissect the HAI functional activity of HA-specific antibody populations in a single assay format. IMPORTANCE The hemagglutination inhibition (HAI) assay is a well-established and reproducible method that quantifies functional antibody activity against influenza viruses and, in particular, the capability of an antibody formulation to inhibit the binding of hemagglutinin (HA) to sialic acid. However, the HAI assay does not provide full insights on the breadth and epitope recognition of the antibody formulation, especially in the context of polyclonal sera, where multiple antibody specificities contribute to the overall observed functional activity. In this report we introduce the use of Y98F point-mutated recombinant HA (HAΔSA) proteins, which lack sialic acid binding activity, in the context of the HAI assay as a means to absorb out certain HA-directed (i.e., strain-specific or cross-reactive) antibody populations. This modification to the classical HAI assay, referred to as the competitive HAI assay, represents a new tool to dissect the magnitude and breadth of polyclonal antibodies elicited through vaccination or natural infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Pruebas de Inhibición de Hemaglutinación/métodos , Gripe Humana/diagnóstico , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Reacciones Cruzadas , Modelos Animales de Enfermedad , Epítopos , Hurones/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Vacunación
11.
Cells ; 10(8)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34440612

RESUMEN

Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.


Asunto(s)
Antígenos Virales/análisis , Linfocitos B/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Memoria Inmunológica , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Animales , COVID-19 , Histidina , Humanos , Ratones , Oligopéptidos , SARS-CoV-2/metabolismo
12.
PLoS One ; 16(8): e0254421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351920

RESUMEN

Influenza is a highly contagious viral respiratory disease that affects million of people worldwide each year. Annual vaccination is recommended by the World Health Organization with the goal of reducing influenza severity and limiting transmission through elicitation of antibodies targeting the hemagglutinin (HA) glycoprotein. The antibody response elicited by current seasonal influenza virus vaccines is predominantly strain-specific, but pre-existing influenza virus immunity can greatly impact the serological antibody response to vaccination. However, it remains unclear how B cell memory is shaped by recurrent annual vaccination over the course of multiple seasons, especially in high-risk elderly populations. Here, we systematically profiled the B cell response in young adult (18-34 year old) and elderly (65+ year old) vaccine recipients that received annual split inactivated influenza virus vaccination for 3 consecutive seasons. Specifically, the antibody serological and memory B-cell compartments were profiled for reactivity against current and historical influenza A virus strains. Moreover, multiparametric analysis and antibody landscape profiling revealed a transient increase in strain-specific antibodies in the elderly, but with an impaired recall response of pre-existing memory B-cells, plasmablast (PB) differentiation and long-lasting serological changes. This study thoroughly profiles and compares the immune response to recurrent influenza virus vaccination in young and elderly participants unveiling the pitfalls of current influenza virus vaccines in high-risk populations.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Memoria Inmunológica , Vacunas contra la Influenza/administración & dosificación , Vacunación , Adolescente , Adulto , Anciano , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Masculino
13.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34168077

RESUMEN

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1ß, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


Asunto(s)
Antivirales/inmunología , Oxidasas Duales/metabolismo , Inmunidad Innata , Animales , Apoptosis , Bronquios/patología , Bronquios/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Gripe Humana/inmunología , Gripe Humana/patología , Gripe Humana/virología , Lactoperoxidasa/metabolismo , Ratones , Neuraminidasa/química , Neuraminidasa/metabolismo , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteolisis , ARN Viral/metabolismo , Tiocianatos , Proteínas Virales/química , Proteínas Virales/metabolismo , Inactivación de Virus , Internalización del Virus , Replicación Viral
14.
Theranostics ; 11(14): 6873-6890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093859

RESUMEN

Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Sinergismo Farmacológico , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Survivin/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Viruses ; 13(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921104

RESUMEN

Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been suggested, this has not been proven, and the subject remains controversial. TIN is the most frequent histopathological finding in the context of feline chronic kidney disease (CKD), which is one of the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology, pathogenicity, and clinicopathological findings observed in naturally infected cats.


Asunto(s)
Enfermedades de los Gatos , Infecciones por Morbillivirus , Morbillivirus/fisiología , Insuficiencia Renal Crónica , Animales , Enfermedades de los Gatos/patología , Enfermedades de los Gatos/virología , Gatos , Riñón/virología , Infecciones por Morbillivirus/epidemiología , Infecciones por Morbillivirus/veterinaria , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/veterinaria
17.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
18.
PLoS One ; 16(2): e0247253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617543

RESUMEN

Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016-2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the impact evolution can have on BCRs in response to influenza virus vaccination, which can guide future universal influenza prophylactic approaches.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Anciano , Reacciones Cruzadas/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hemaglutininas/inmunología , Humanos , Inmunoglobulina G/inmunología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Vacunación/métodos , Vacunas de Productos Inactivados/inmunología , Adulto Joven
20.
J Phys Chem Lett ; 11(19): 8084-8093, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32885971

RESUMEN

SARS-CoV-2 is a health threat with dire socioeconomical consequences. As the crucial mediator of infection, the viral glycosylated spike protein (S) has attracted the most attention and is at the center of efforts to develop therapeutics and diagnostics. Herein, we use an original decomposition approach to identify energetically uncoupled substructures as antibody binding sites on the fully glycosylated S. Crucially, all that is required are unbiased MD simulations; no prior knowledge of binding properties or ad hoc parameter combinations is needed. Our results are validated by experimentally confirmed structures of S in complex with anti- or nanobodies. We identify poorly coupled subdomains that are poised to host (several) epitopes and potentially involved in large functional conformational transitions. Moreover, we detect two distinct behaviors for glycans: those with stronger energetic coupling are structurally relevant and protect underlying peptidic epitopes, and those with weaker coupling could themselves be prone to antibody recognition.


Asunto(s)
Epítopos/química , Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus/química , Algoritmos , Betacoronavirus/química , Sitios de Unión de Anticuerpos , Glicosilación , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos/química , Polisacáridos/química , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA