Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
JACS Au ; 2(9): 2029-2037, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186551

RESUMEN

Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet-triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn-Sham density functional theory for singlet-triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates.

2.
Org Biomol Chem ; 19(31): 6776-6780, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34296728

RESUMEN

This contribution explores the bifunctional catalytic activity of water clusters ((H2O)n with n = 1-5) in organic chemistry similar to that observed in the formation of H2SO4 in acid rain (Chem. Commun., 53, 3516, (2017)). We considered for this purpose the Hydrolysis of Epoxides (HE), in particular, that of oxirane and its methyl derivatives. Surrounding water molecules with H-bond cooperative effects decrease the activation energy of the rate-limiting step of HE in condensed phase, especially when they lead to an anti-periplanar attack on the alkoxide leaving group. Furthermore, the water molecules have a bifunctional catalytic role in HE by (i) increasing the nucleophilic and electrophilic character of the attacking oxygen atom and the leaving group of the reaction, respectively, and (ii) placing the reactants in a suitable disposition for the substitution to occur. Overall, this investigation provides relevant insights into the collective action of water molecules on organic reactions in neutral, basic and acid media.

3.
Chemphyschem ; 22(12): 1269-1285, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33635563

RESUMEN

Non-additive effects in hydrogen bonds (HB) take place as a consequence of electronic charge transfers. Therefore, it is natural to expect cooperativity and anticooperativity in ion-water interactions. Nevertheless, investigations on this matter are scarce. This paper addresses the interactions of (i) the cations Li+ , Na+ , K+ , Be2+ , Mg2+ , and Ca2+ together with (ii) the anions F- , Cl- , Br- , NO3- and SO42- with water clusters (H2 O)n , n=1-8, and the effects of these ions on the HBs within the complete molecular adducts. We used quantum chemical topology tools, specifically the quantum theory of atoms in molecules and the interacting quantum atoms energy partition to investigate non-additive effects among the interactions studied herein. Our results show a decrease on the interaction energy between ions and the first neighbouring water molecules with an increment of the coordination number. We also found strong cooperative effects in the interplay between HBs and ion-dipole interactions within the studied systems. Such cooperativity affects considerably the interactions among ions with their first and second solvation shells in aqueous environments. Overall, we believe this article provides valuable information about how ion-dipole contacts interact with each other and how they relate to other interactions, such as HBs, in the framework of non-additive effects in aqueous media.

4.
Chem Sci ; 9(19): 4402-4413, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29896381

RESUMEN

Amides dimerise more strongly than imides despite their lower acidity. Such an unexpected result has been rationalised in terms of the Jorgensen Secondary Interactions Hypothesis (JSIH) that involves the spectator (C[double bond, length as m-dash]OS) and H-bonded (C[double bond, length as m-dash]OHB) carbonyl groups in imides. Notwithstanding the considerable body of experimental and theoretical evidence supporting the JSIH, there are some computational studies which suggest that there might be other relevant intermolecular interactions than those considered in this model. We conjectured that the spectator carbonyl moieties could disrupt the resonance-assisted hydrogen bonds in imide dimers, but our results showed that this was not the case. Intrigued by this phenomenon, we studied the self-association of a set of amides and imides via 1H-NMR, 1H-DOSY experiments, DFT calculations, QTAIM topological analyses of the electron density and IQA partitions of the electronic energy. These analyses revealed that there are indeed repulsions of the type OS···OHB in accordance with the JSIH but our data also indicate that the C[double bond, length as m-dash]OS group has an overall attraction with the interacting molecule. Instead, we found correlations between self-association strength and simple Brønsted-Lowry acid/base properties, namely, N-H acidities and C[double bond, length as m-dash]O basicities. The results in CDCl3 and CCl4 indicate that imides dimerise less strongly than structurally related amides because of the lower basicity of their carbonyl fragments, a frequently overlooked aspect in the study of H-bonding. Overall, the model proposed herein could provide important insights in diverse areas of supramolecular chemistry such as the study of multiple hydrogen-bonded adducts which involve amide or imide functional groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...