Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38591621

RESUMEN

Cobalt(II) chloride (CoCl2) being in the vicinity of polyimide chains entails modifications in terms of the molecular dynamics, which are mainly governed by the possible presence of amic acid residual groups, by the transition-metal-type characteristics of cobalt and by the CoCl2 content. Polyimide was synthesized using poly(amic acid) according to the reaction of 2,2'-bis(3,4-dicarboxylphenyl)hexafluoropropane dianhydride (6FDA) with 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) in N,N-dimethylacetamide. CoCl2 was added before the thermal imidization of the poly(amic acid). An experimental approach was designed to establish the interaction between the polyimide and CoCl2 and whether the interaction depends on the quantity of the salt. Evidence for the existence of residual amic acid groups was obtained using second derivative Fourier Transform Infrared Spectroscopy (FTIR) and with the help of 2D correlation spectroscopy (2D-COS). Moreover, FTIR, along with X-ray photoelectron spectroscopy (XPS), revealed the interaction between the polymer and CoCl2, primarily in the form of Co(II)-N coordinated bonds. Nevertheless, the coordination of cobalt with suitable atoms from the amic acid groups is not precluded. The results of dynamic mechanical analysis (DMA) featured a specific relaxation assigned to the presence of CoCl2 in the polymeric film and demonstrated that its (non)reinforcing effect depends on its content in the polyimide.

2.
Materials (Basel) ; 16(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512255

RESUMEN

Azo-polyimide films with supramolecular structure were obtained by casting onto glass plates a mixture based on polyamidic acid and different quantities of azochromophore, followed by thermal treatment to realize the final azo-polyimide structure. The dielectric characteristics of the supramolecular structure of polymer films were investigated by broad-band dielectric spectroscopy measurements at different temperatures and frequencies. The free-standing films proved to be flexible and tough and maintained their integrity after repeated bending. The work of adhesion at the polymer/platinum interface was calculated after the evaluation of the surface energy parameters before and after plasma treatment. Atomic force microscopy was used to image the surface morphology, the evolution of the roughness parameters, and the adhesion force between the platinum-covered tip and the polymer surface, registered at the nanoscale with the quantity of the azo dye introduced in the system. The simulation of the columnar growth of a platinum layer was made to provide information about the deposition parameters that should be used for optimal results in the deposition of platinum electrodes for sensors.

3.
Sensors (Basel) ; 23(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177692

RESUMEN

A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why it is required to have good interfacial compatibility between the flexible substrate and the inorganic layer. The interface of the sensor elements must be designed in such a way as to improve the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly employed techniques used for surface adaptation by patterning polyimides to increase contact and enhance device reliability and signal transmission. In this context, this work highlights unreported aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability, which are impacting the compatibility with silver. The texture parameters indicate an improvement of the modulations' quality arising after laser irradiation through the phase mask, increasing the bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore increases. The force curve spectroscopy and wettability studies indicated that the modification of the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal lines when the azo component and the polyamidic acid are in equimolar quantities.

4.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110637

RESUMEN

Herein, we report the synthesis of inclusion complexes (ICs) based on 3,4-ethylenedioxythiophene (EDOT) with permethylated ß-cyclodextrins (TMe-ßCD) and permethylated γ-cyclodextrins (TMe-γCD) host molecules. To prove the synthesis of such ICs, molecular docking simulation, UV-vis titrations in water, 1H-NMR, and H-H ROESY, as well as matrix-assisted laser desorption ionization mass spectroscopy (MALDI TOF MS) and thermogravimetric analysis (TGA) were carried out on each of the EDOT∙TMe-ßCD and EDOT∙TMe-γCD samples. The results of computational investigations reveal the occurrence of hydrophobic interactions, which contribute to the insertion of the EDOT guest inside the macrocyclic cavities and a better binding of the neutral EDOT to TMe-ßCD. The H-H ROESY spectra show correlation peaks between H-3 and H-5 of hosts and the protons of the guest EDOT, suggesting that the EDOT molecule is included inside the cavities. The MALDI TOF MS analysis of the EDOT∙TMe-ßCD solutions clearly reveals the presence of MS peaks corresponding to sodium adducts of the species associated with the complex formation. The IC preparation shows remarkable improvements in the physical properties of EDOT, rendering it a plausible alternative to increasing its aqueous solubility and thermal stability.

5.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850339

RESUMEN

The progress of digital technologies demands more speed and larger storage capacity. Optical storage systems have the advantage of being cheap, fast and capacious. This article explores the potential use of polyimide-based films as a recording medium for optical storage devices. The materials were designed through a host-guest approach that involves a cyano-containing polyimide precursor and an azochromophore combined in the following ratios: 1:0.25, 1:0.5, 1:0.75 and 1:1. After thermal treatment up to 200 °C, polyimide systems were formed with supramolecular structures constructed via hydrogen bonding as shown by molecular modeling and FTIR at around 3350 cm-1. The aspects arising from the variation of the azo-dye content in the polyimide samples and their impact on the vitrification temperature, colorimetric features, refractive index, band gap, non-linear optical susceptibility and birefringence were investigated for the first time. The thermal analysis indicated a slight decrease in the vitrification temperature from 190.84 °C for the sample without azo dye to 163.91 °C for the film containing the highest leading of azo dye. The morphology images revealed the occurrence of periodic structures in azo-derived materials exposed to a UV laser, which is accentuated by the addition of more azo dye molecules. Optical tests allowed observation of the increase in the dominant wavelength, refractivity and optical conductivity of the samples, produced by the incorporation of azochromophore and laser irradiation. The photo-generated birefringence increased from 0.014 (sample with 1:0.25) to 0.036 (sample with 1:1), which in combination with the created regular topography pattern, is essential for the use of these materials as recording media in optical storage applications.

6.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499549

RESUMEN

High-performance supramolecular polyimide systems were synthesized via a simple and innovative approach using two types of azo-chromophores, leading to concomitant special properties: high thermostability, the ability to be processed in the form of films with high flexibility, adequate morphological features, and good structuring capacity via phase mask ultraviolet (UV) laser irradiation, induced by the presence of the azo groups (-N=N-). The dimension and the anisotropy degree of the micro/nano patterns obtained on the surface of the flexible films (determined by atomic force microscopy) depend on the azo-dye type used in the supramolecular azopolyimide synthesis, which were higher when the azo-chromophore containing a -cyano group (-C≡N) was used. The molecular dynamics method, an excellent tool for an in-depth examination of the intermolecular interactions, was used to explain the morphological aspects. Energetic, dynamic and structural parameters were calculated for the two systems containing azo-chromophores, as well as for the pristine polymer system. It was highlighted that the van der Waals forces make a major contribution to the intermolecular interactions. The results from the combination of the dynamic analysis and the concentration profile explain the better mobility of the polyimide chains with a maximum content of azo groups in the cis configuration compared to the other systems. Taking all these data into account, the surfaces of the films can be tuned as required for the proposed applications, namely as substrates for flexible electronis.


Asunto(s)
Compuestos Azo , Luz , Compuestos Azo/química , Microscopía de Fuerza Atómica , Rayos Ultravioleta , Polímeros/química
7.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809999

RESUMEN

Aromatic polyimides containing side azo-naphthalene groups have been investigated regarding their capacity of generating surface relief gratings (SRGs) under pulsed UV laser irradiation through phase masks, using different fluencies and pulse numbers. The process of the material photo-fluidization and the supramolecular re-organization of the surface were investigated using atomic force microscopy (AFM). At first, an AFM nanoscale topographical analysis of the induced SRGs was performed in terms of morphology and tridimensional amplitude, spatial, hybrid, and functional parameters. Afterward, a nanomechanical characterization of SRGs using an advanced method, namely, AFM PinPoint mode, was performed, where the quantitative nanomechanical properties (i.e., modulus, adhesion, deformation) of the nanostructured azo-polyimide surfaces were acquired with a highly correlated topographic registration. This method proved to be very effective in understanding the formation mechanism of the surface modulations during pulsed UV laser irradiation. Additionally to AFM investigations, confocal Raman measurements and molecular simulations were performed to provide information about structured azo-polyimide chemical composition and macromolecular conformation induced by laser irradiation.

8.
Microsc Res Tech ; 76(9): 914-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23801415

RESUMEN

The surface morphology of azo-polyimide films was investigated after 355 nm Nd: YAG laser irradiation with two different incident fluencies. Atomic force microscopy (AFM) was employed to correlate the laser-induced tridimensional nanogrooved surface relief with the incident fluence and the number of irradiation pulses. The height images revealed that the grooves depth increased even tens of times by increasing the incident fluence, using the same numbers of irradiation pulses. For low incident fluence, the films were uniformly patterned till 100 pulses of irradiation. Instead, when using higher fluence, after 15 pulses of irradiation the accuracy of the surface relief definition was reduced. This behavior could be explained by means of two different mechanisms, one that suppose the film photo-fluidization due to the cis-trans isomerization processes of the azo-groups and the second one responsible for the directional mass displacement. The dominant surface direction and parameters like isotropy, periodicity, and period were evaluated from the polar representation for texture analysis, revealing the appearance of ordered and directionated nanostructures for most of the experimental conditions. Also, the graphical studies of the functional volume parameters have evidenced the improvement of the relief structuration during surface nanostructuration. The correlation of these statistical texture parameters with the irradiation characteristics is important in controlling the alignment of either the liquid crystals or the cells/tissues on patterned azo-polyimide surfaces for optoelectronic devices and implantable biomaterials, respectively.

9.
J Phys Chem B ; 116(30): 9082-8, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22765226

RESUMEN

Solution rheology and electrospinning performance of an aromatic polyimide based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) was studied. Analyzing the dependence of specific viscosity on polymer concentration enabled the evaluation of the transition from semidilute unentangled to semidilute entangled regime at 18.3%. Modification of chain interactions in solution is also reflected in a sudden increase of flow energetic barrier and consistency index values from 3.56 to 10.28 kJ/mol and 0.19 to 1.09 Pa·s(n), respectively. In the concentration domain of 15-20% the relaxation time is enhanced from 0.48 to 1.07 s, as a consequence of less chain mobility, which can be associated with the elastic character of the polyimide solution, useful for obtaining fibers. Scanning electron microscopy (SEM) and polarized light microscopy (PLM) images indicate that at 25% beaded fibers are obtained, while at 30% bead-free fibers are formed having the diameter comprised between 0.56 and 0.85 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...