Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Front Immunol ; 15: 1355012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482001

RESUMEN

Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.


Asunto(s)
Citocinas , Macrófagos , Humanos , Citocinas/metabolismo , Transducción de Señal , Inflamación , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Oncogene ; 43(16): 1178-1189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396293

RESUMEN

Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genética , Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Proteínas Quinasas Activadas por Mitógenos , Proliferación Celular/genética , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/genética
3.
Inflamm Regen ; 43(1): 52, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37876024

RESUMEN

Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.

4.
Front Oncol ; 13: 1182391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655099

RESUMEN

Up to 20% of all non-small cell lung cancer patients harbor tumor specific driver mutations that are effectively treated with tyrosine kinase inhibitors. However, for the rare EGFR deletion-insertion mutation of exon 18, there is very little evidence regarding the effectiveness of tyrosine kinase inhibitors. A particular challenge for clinicians in applying tyrosine kinase inhibitors is not only diagnosing a mutation but also interpreting rare mutations with unclear therapeutic significance. Thus, we present the case of a 65-year-old Caucasian male lung adenocarcinoma patient with an EGFR Exon 18 p.Glu709_Thr710delinsAsp mutation of uncertain therapeutic relevance. This patient initially received two cycles of standard platinum-based chemotherapy without any therapeutic response. After administration of Osimertinib as second line therapy, the patient showed a lasting partial remission for 12 months. Therapy related toxicities were limited to mild thrombocytopenia, which ceased after dose reduction of Osimertinib. To our knowledge, this is the first report of effective treatment of this particular mutation with Osimertinib. Hence, we would like to discuss Osimertinib as a viable treatment option in EGFR Exon 18 p.Glu709_Thr710delinsAsp mutated lung adenocarcinoma.

5.
EMBO J ; 42(18): e111620, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37545364

RESUMEN

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Lung Cancer ; 184: 107317, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586177

RESUMEN

OBJECTIVES: Molecular diagnosis for targeted therapies has been improved significantly in non-small-cell lung cancer (NSCLC) patients in recent years. Here we report on the prevalence of rare fusions in NSCLC and dissect their genomic architecture and potential clinical implications. MATERIALS AND METHODS: Overall, n = 5554 NSCLC patients underwent next-generation sequencing (NGS) for combined detection of oncogenic mutations and fusions either at primary diagnosis (n = 5246) or after therapy resistance (n = 308). Panels of different sizes were employed with closed amplicon-based, or open assays, i.e. anchored multiplex PCR (AMP) and hybrid capture-based, for detection of translocations, including "rare" fusions, defined as those beyond ALK, ROS1, RET and <0.5 % frequency in NSCLC. RESULTS: Rare fusions involving EGFR, MET, HER2, BRAF and other potentially actionable oncogenes were detected in 0.5% (n = 26) of therapy-naive and 2% (n = 6) TKI-treated tumors. Detection was increased using open assays and/or larger panels, especially those covering >25 genes, by approximately 1-2% (p = 0.001 for both). Patient characteristics (age, gender, smoking, TP53 co-mutations (56%), or mean tumor mutational burden (TMB) (4.8 mut/Mb)) showed no association with presence of rare fusions. Non-functional alterations, i.e. out-of-frame or lacking kinase domains, comprised one-third of detected rare fusions and were significantly associated with simultaneous presence of classical oncogenic drivers, e.g. EGFR or KRAS mutations (p < 0.001), or use of larger panels (frequency of non-functional among the detected rare fusions 57% for 25+ gene- vs. 12% for smaller panels, p < 0.001). As many rare fusions were identified before availability of targeted therapy, mean survival for therapy-naïve patients was 23.8 months, comparable with wild-type tumors. CONCLUSION: Approximately 1-2% of advanced NSCLC harbor rare fusions, which are potentially actionable and may support diagnosis. Routine adoption of broad NGS assays capable to identify exact fusion points and potentially retained protein domains can increase the yield of therapeutically relevant molecular information in advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Genómica , Mutación , Receptores ErbB/genética
7.
Clin Lung Cancer ; 24(8): 706-716.e1, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37460340

RESUMEN

INTRODUCTION: The tumoral immune milieu plays a crucial role for the development of non-small-cell lung cancer (NSCLC) and may influence individual prognosis. We analyzed the predictive role of immune cell infiltrates after curative lung cancer surgery. MATERIALS AND METHODS: The tumoral immune-cell infiltrate from 174 patients with pN1 NSCLC and adjuvant chemotherapy was characterized using immunofluorescence staining. The density and distribution of specific immune cells in tumor center (TU), invasive front (IF) and normal tissue (NORM) were correlated with clinical parameters and survival data. RESULTS: Tumor specific survival (TSS) of all patients was 69.9% at 5 years. The density of tumor infiltrating lymphocytes (TIL) was higher in TU and IF than in NORM. High TIL density in TU (low vs. high: 62.0% vs. 86.7%; p = .011) and the presence of cytotoxic T-Lymphocytes (CTLs) in TU and IF were associated with improved TSS (positive vs. negative: 90.6% vs. 64.7% p = .024). High TIL-density correlated with programmed death-ligand 1 expression levels ≥50% (p < .001). Multivariate analysis identified accumulation of TIL (p = .016) and low Treg density (p = .003) in TU as negative prognostic predictors in squamous cell carcinoma (p = .025), whereas M1-like tumor- associated macrophages (p = .019) and high programmed death-ligand 1 status (p = .038) were associated with better survival in adenocarcinoma. CONCLUSION: The assessment of specific intratumoral immune cells may serve as a prognostic predictor in pN1 NSCLC. However differences were observed related to adenocarcinoma or squamous cell carcinoma histology. Prospective assessment of the immune-cell infiltrate and further clarification of its prognostic relevance could assist patient selection for upcoming perioperative immunotherapies.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Pronóstico , Neoplasias Pulmonares/patología , Estudios Prospectivos , Carcinoma de Células Escamosas/patología , Adenocarcinoma/metabolismo , Linfocitos Infiltrantes de Tumor , Antígeno B7-H1/metabolismo
8.
Lung Cancer ; 180: 107212, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141769

RESUMEN

OBJECTIVE: Intratumoral heterogeneity was found to be a significant factor causing resistance to lung cancer therapies, including immune checkpoint blockade. Lesser is known about spatial heterogeneity of the tumor microenvironment (TME) and its association with genetic properties of the tumor, which is of particular interest in the therapy-naïve setting. MATERIALS AND METHODS: We performed multi-region sampling (2-4 samples per tumor; total of 55 samples) from a cohort of 19 untreated stage IA-IIIB lung adenocarcinomas (n = 11 KRAS mutant, n = 1 ERBB2 mutant, n = 7 KRAS wildtype). For each sample the expression of 770 immunooncology-related genes was analyzed using the nCounter platform, while the mutational status was determined by hybrid capture-based next-generation sequencing (NGS) using a large panel covering more than 500 genes. RESULTS: Global unsupervised analyses revealed clustering of the samples into two groups corresponding to a 'hot' or 'cold' immunologic tumor contexture based on the abundance of immune cell infiltrates. All analyzed specific immune cell signatures (ICsig) showed a significantly higher intertumoral than intratumoral heterogeneity (p < 0.02), as most of the analyzed cases (14/19) showed a very homogenous spatial immune cell profile. PD-L1 exhibited a significantly higher intertumoral than intratumoral heterogeneity (p = 1.03e-13). We found a specific association with 'cold' TME for STK11 (11/14, p < 0.07), but not KRAS, TP53, LRP1B, MTOR, U2AF1 co-mutations, and validated this finding using The Cancer Genome Atlas (TCGA) data. CONCLUSION: Early-stage lung adenocarcinomas show considerable intertumoral, but limited intratumoral heterogeneity, which is clinically highly relevant as assessment before neoadjuvant treatment is based on small biopsies. STK11 mutations are specifically associated with a 'cold' TME, which could affect the efficacy of perioperative immunotherapy.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Evasión Inmune , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Evasión Inmune/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Humanos , Mutación , Estadificación de Neoplasias
9.
Cancer Res ; 83(14): 2345-2357, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37205635

RESUMEN

Tumor-associated macrophages (TAM), including antitumor M1-like TAMs and protumor M2-like TAMs, are transcriptionally dynamic innate immune cells with diverse roles in lung cancer development. Epigenetic regulators are key in controlling macrophage fate in the heterogeneous tumor microenvironment. Here, we demonstrate that the spatial proximity of HDAC2-overexpressing M2-like TAMs to tumor cells significantly correlates with poor overall survival of lung cancer patients. Suppression of HDAC2 in TAMs altered macrophage phenotype, migration, and signaling pathways related to interleukins, chemokines, cytokines, and T-cell activation. In coculture systems of TAMs and cancer cells, suppressing HDAC2 in TAMs resulted in reduced proliferation and migration, increased apoptosis of cancer cell lines and primary lung cancer cells, and attenuated endothelial cell tube formation. HDAC2 regulated the M2-like TAM phenotype via acetylation of histone H3 and transcription factor SP1. Myeloid cell-specific deletion of Hdac2 and pharmacologic inhibition of class I HDACs in four different murine lung cancer models induced the switch from M2-like to M1-like TAMs, altered infiltration of CD4+ and CD8+ T cells, and reduced tumor growth and angiogenesis. TAM-specific HDAC2 expression may provide a biomarker for lung cancer stratification and a target for developing improved therapeutic approaches. SIGNIFICANCE: HDAC2 inhibition reverses the protumor phenotype of macrophages mediated by epigenetic modulation induced by the HDAC2-SP1 axis, indicating a therapeutic option to modify the immunosuppressive tumor microenvironment.


Asunto(s)
Neoplasias Pulmonares , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular , Células Mieloides , Biomarcadores/metabolismo , Microambiente Tumoral , Línea Celular Tumoral
10.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042252

RESUMEN

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Arterial Pulmonar , Ratas , Ratones , Animales , Remodelación Ventricular , beta Catenina , Cateninas , Monocrotalina/toxicidad , Transducción de Señal , Modelos Animales de Enfermedad , Función Ventricular Derecha
11.
Cancers (Basel) ; 15(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36980752

RESUMEN

Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1ß and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human KRAS-mutant cancers are addicted to IL-1ß via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) ß. Human pan-cancer and experimental NF-κB reporter, transcriptome, and proteome screens reveal that KRAS-mutant tumors trigger macrophage IKKß activation and IL-1ß release via secretory versican. Tumor-specific versican silencing and macrophage-restricted IKKß deletion prevents myeloid NF-κB activation and metastasis. Versican and IKKß are mutually addicted and/or overexpressed in human cancers and possess diagnostic and prognostic power. Non-oncogene KRAS/IL-1ß addiction is abolished by IL-1ß and TLR1/2 inhibition, indicating cardinal and actionable roles for versican and IKKß in metastasis.

12.
Gut ; 72(8): 1510-1522, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36759154

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic stroma composed of cancer-associated fibroblasts (CAF) and interspersed immune cells. A non-canonical CD8+ T-cell subpopulation producing IL-17A (Tc17) promotes autoimmunity and has been identified in tumours. Here, we evaluated the Tc17 role in PDAC. DESIGN: Infiltration of Tc17 cells in PDAC tissue was correlated with patient overall survival and tumour stage. Wild-type (WT) or Il17ra-/- quiescent pancreatic stellate cells (qPSC) were exposed to conditional media obtained from Tc17 cells (Tc17-CM); moreover, co-culture of Tc17-CM-induced inflammatory (i)CAF (Tc17-iCAF) with tumour cells was performed. IL-17A/F-, IL-17RA-, RAG1-deficient and Foxn1nu/nu mice were used to study the Tc17 role in subcutaneous and orthotopic PDAC mouse models. RESULTS: Increased abundance of Tc17 cells highly correlated with reduced survival and advanced tumour stage in PDAC. Tc17-CM induced iCAF differentiation as assessed by the expression of iCAF-associated genes via synergism of IL-17A and TNF. Accordingly, IL-17RA controlled the responsiveness of qPSC to Tc17-CM. Pancreatic tumour cells co-cultured with Tc17-iCAF displayed enhanced proliferation and increased expression of genes implicated in proliferation, metabolism and protection from apoptosis. Tc17-iCAF accelerated growth of mouse and human tumours in Rag1-/- and Foxn1nu/nu mice, respectively. Finally, Il17ra-expressed by fibroblasts was required for Tc17-driven tumour growth in vivo. CONCLUSIONS: We identified Tc17 as a novel protumourigenic CD8+ T-cell subtype in PDAC, which accelerated tumour growth via IL-17RA-dependent stroma modification. We described a crosstalk between three cell types, Tc17, fibroblasts and tumour cells, promoting PDAC progression, which resulted in poor prognosis for patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T CD8-positivos , Fibroblastos Asociados al Cáncer/metabolismo , Interleucina-17/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Proteínas de Homeodominio , Neoplasias Pancreáticas
13.
Cancer Immunol Res ; 11(4): 421-434, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758176

RESUMEN

Intratumoral cytotoxic CD8+ T cells (CTL) enter a dysfunctional state characterized by expression of coinhibitory receptors, loss of effector function, and changes in the transcriptional landscape. Even though several regulators of T-cell exhaustion have been identified, the molecular mechanisms inducing T-cell exhaustion remain unclear. Here, we show that IL18 receptor (IL18R) signaling induces CD8+ T-cell exhaustion in a murine pancreatic cancer model. Adoptive transfer of Il18r-/- OT-1 CD8+ CTLs resulted in enhanced rejection of subcutaneous tumors expressing ovalbumin (OVA) as a model antigen (PancOVA), compared with wild-type OT-1 CTLs. Transferred intratumoral IL18R-deficient CTLs expressed higher levels of effector cytokines TNF and IFNγ and had reduced expression of coinhibitory receptors (PD-1, TIM-3, 2B4, LAG-3) and the transcription factors Eomes and TOX. Lower expression of coinhibitory receptors and TOX on IL18R-deficient versus IL18R-sufficient CD8+ T cells were confirmed in an orthotopic KPC model. IL18R-induced T-cell exhaustion was regulated by IL2/STAT5 and AKT/mTOR pathways, as demonstrated in an in vitro exhaustion assay. Concordantly, mice deficient in NLRP3, the molecular complex activating IL18, had decreased expression of coinhibitory receptors on intratumoral T cells and similar changes in signaling pathways at the transcriptome level. Thus, molecular pathways promoting T-cell exhaustion indicate an involvement of an NLRP3-expressing tumor microenvironment, which mediates IL18 release. The Cancer Genome Atlas analysis of patients with pancreatic carcinoma showed an association between NLRP3-mediated IL18 signaling and shorter survival. These findings indicate NLRP3-mediated IL18R signaling as a regulator of intratumoral T-cell exhaustion and a possible target for immunotherapy. See related Spotlight by Stromnes, p. 400.


Asunto(s)
Interleucina-18 , Neoplasias Pancreáticas , Ratones , Animales , Interleucina-2 , Agotamiento de Células T , Receptores de Interleucina-18 , Factor de Transcripción STAT5 , Proteína con Dominio Pirina 3 de la Familia NLR , Linfocitos T CD8-positivos/inmunología , Neoplasias Pancreáticas/genética , Serina-Treonina Quinasas TOR , Inflamación , Microambiente Tumoral , Neoplasias Pancreáticas
14.
PLoS Pathog ; 19(1): e1011063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634048

RESUMEN

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2 , Pulmón , Reacciones Cruzadas
15.
Cancer Med ; 12(7): 8880-8896, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36707972

RESUMEN

INTRODUCTION: Trials of CT-based screening for lung cancer have shown a mortality advantage for screening in North America and Europe. Before introducing a nationwide lung cancer screening program in Germany, it is important to assess the criteria used in international trials in the German population. METHODS: We used data from 3623 lung cancer patients from the data warehouse of the German Center for Lung Research (DZL). We compared the sensitivity of the following lung cancer screening criteria overall and stratified by age and histology: the National Lung Screening Trial (NLST), the Danish Lung Cancer Screening Trial (DLCST), the 2013 and 2021 US Preventive Services Task Force (USPSTF), and an adapted version of the Prostate, Lung, Colorectal, and Ovarian no race model (adapted PLCOm2012) with 6-year risk thresholds of 1.0%/6 year and 1.7%/6 year. RESULTS: Overall, the adapted PLCOm2012 model (1%/6 years), selected the highest proportion of lung cancer patients for screening (72.4%), followed by the 2021 USPSTF (70.0%), the adapted PLCOm2012 (1.7%/6 year) (57.4%), the 2013 USPTF (57.0%), DLCST criteria (48.7%), and the NLST (48.5%). The adapted PLCOm2012 risk model (1.0%/6 year) had the highest sensitivity for all histological types except for small-cell and large-cell carcinomas (non-significant), whereas the 2021 USPTF selected a higher proportion of patients. The sensitivity levels were higher in males than in females. CONCLUSION: Using a risk-based selection score resulted in higher sensitivities compared to criteria using dichotomized age and smoking history. However, gender disparities were apparent in all studied eligibility criteria. In light of increasing lung cancer incidences in women, all selection criteria should be reviewed for ways to close this gender gap, especially when implementing a large-scale lung cancer screening program.


Asunto(s)
Neoplasias Pulmonares , Femenino , Humanos , Masculino , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Tamizaje Masivo/métodos , Medición de Riesgo/métodos , Fumar/epidemiología
16.
Nat Commun ; 13(1): 6078, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241617

RESUMEN

Fibrocytes are bone marrow-derived monocytic cells implicated in wound healing. Here, we identify their role in lung cancer progression/ metastasis. Selective manipulation of fibrocytes in mouse lung tumor models documents the central role of fibrocytes in boosting niche features and enhancing metastasis. Importantly, lung cancer patients show increased number of circulating fibrocytes and marked fibrocyte accumulation in the cancer niche. Using double and triple co-culture systems with human lung cancer cells, fibrocytes, macrophages and endothelial cells, we substantiate the central features of cancer-supporting niche: enhanced cancer cell proliferation and migration, macrophage activation, augmented endothelial cell sprouting and fibrocyte maturation. Upregulation of endothelin and its receptors are noted, and dual endothelin receptor blockade suppresses all cancer-supportive phenotypic alterations via acting on fibrocyte interaction with the cancer niche. We thus provide evidence for a crucial role of fibrocytes in lung cancer progression and metastasis, suggesting targets for treatment strategies.


Asunto(s)
Células Endoteliales , Neoplasias Pulmonares , Animales , Endotelinas , Fibroblastos/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Monocitos/patología , Receptores de Endotelina
17.
Mol Cancer ; 21(1): 191, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192757

RESUMEN

BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.


Asunto(s)
Copépodos , Neoplasias Pulmonares , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Copépodos/genética , Copépodos/metabolismo , Edición Génica , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Neoplasias Pulmonares/genética , Ratones
18.
Arch Microbiol ; 204(10): 603, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36063223

RESUMEN

Lung cancer, the most prevalent gender-independent tumor entity in both men and women, is among the leading cause of cancer-related deaths worldwide. Despite decades of effort in developing improved therapeutic strategies including immunotherapies and novel chemotherapeutic agents, only modest improvements in outcome and long-term survival of lung cancer patients have been achieved. Therefore, exploring new and exceptional sources for bioactive compounds that might serve as anti-cancer agents might be the key to improving lung cancer therapy. On account of diverse forms, cyanobacteria might serve as a potential source for compounds with potential therapeutic applicability against malignant disorders, including cancer. The assorted arrays of metabolic mechanisms synthesize a plethora of bioactive compounds with immense biological potential. These compounds have been proven to be effective against various cancer cell lines and xenograft animal models. The present review provides an overview of the most promising cyanobacteria-derived bioactive compounds proven to exhibit anti-cancer properties in in-vitro and in-vivo studies and highlights their applicability as potential therapeutic agents with a focus on their anti-lung cancer properties.


Asunto(s)
Antineoplásicos , Cianobacterias , Neoplasias , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cianobacterias/metabolismo , Femenino , Humanos
19.
Elife ; 112022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36074553

RESUMEN

Lung cancer classification and treatment has been revolutionized by improving our understanding of driver mutations and the introduction of tumor microenvironment (TME)-associated immune checkpoint inhibitors. Despite the significant improvement of lung cancer patient survival in response to either oncogene-targeted therapy or anticancer immunotherapy, many patients show initial or acquired resistance to these new therapies. Recent advances in genome sequencing reveal that specific driver mutations favor the development of an immunosuppressive TME phenotype, which may result in unfavorable outcomes in lung cancer patients receiving immunotherapies. Clinical studies with follow-up after immunotherapy, assessing oncogenic driver mutations and the TME immune profile, not only reveal the underlying potential molecular mechanisms in the resistant lung cancer patients but also hold the key to better treatment choices and the future of personalized medicine. In this review, we discuss the crosstalk between cancer cell genomic features and the TME to reveal the impact of genetic alterations on the TME phenotype. We also provide insights into the regulatory role of cellular TME components in defining the genetic landscape of cancer cells during tumor development.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Factores Inmunológicos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias/patología , Medicina de Precisión , Microambiente Tumoral/genética
20.
Cells ; 11(15)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954255

RESUMEN

HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.


Asunto(s)
Infecciones por VIH , Esquistosomiasis mansoni , Enfermedades Vasculares , Animales , Citocinas/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/patología , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Schistosoma mansoni , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Enfermedades Vasculares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...