Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 14(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38391705

RESUMEN

Investigating new drugs or formulations that target Alzheimer disease (AD) is critical for advancing therapeutic interventions. Therefore, this study aimed to assess the effectiveness of nanoencapsulated curcumin (NC Curc) in alleviating memory impairment, oxidative stress, and neuroinflammation in a validated AD model. Male Wistar rats were given bilateral intracerebroventricular injections of either saline or streptozotocin (STZ) (3 mg/3 µL/site) to establish the AD model (day 0). On day 22, daily oral administrations of curcumin (6 mg/kg), NC Curc (6 mg/kg), or a vehicle (unloaded NC) were initiated and continued for 14 days. NC Curc significantly reversed memory deficits in object recognition and inhibitory avoidance tests induced by STZ. Both formulations of curcumin attenuated elevated acetylcholinesterase activity caused by STZ. Importantly, NC Curc alone effectively mitigated STZ-induced oxidative stress. Additionally, NC Curc treatment normalized GFAP levels, suggesting a potential reduction in neuroinflammation in STZ-treated rats. Our findings indicate that NC Curc improves memory in an AD rat model, highlighting its enhanced therapeutic effects compared to unencapsulated curcumin. This research significantly contributes to understanding the therapeutic and neurorestorative potential of NC Curc in AD, particularly in reversing pathophysiological changes.

2.
Life Sci ; 324: 121711, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37088413

RESUMEN

Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.


Asunto(s)
Eugenia , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Wistar , Eugenia/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Trastornos de la Memoria/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Mol Neurobiol ; 60(3): 1214-1231, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36427137

RESUMEN

In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aß) (25-35 fragment), 3 nmol/3 µl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aß caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aß increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aß. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Nocicepción , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Estrés Oxidativo , Hipocampo/metabolismo , Citocinas/metabolismo , Oxidantes , Purinas/farmacología , Modelos Animales de Enfermedad , Fragmentos de Péptidos/metabolismo
4.
Pharmacol Rep ; 73(2): 563-573, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33471303

RESUMEN

BACKGROUND: Curcumin (CUR) is a bioactive compound with several proven pharmacological properties. However, the major limitation for therapeutic use of CUR is its low bioavailability. In this sense, an alternative to this question is the use of polymeric nanocapsules (NC) as drug/nutraceutical delivery systems. Thus, the aim of current study was to assess the effect of CUR-loaded NC and their different coatings in chick embryo model, evaluating angiogenic, teratogenic and oxidative stress parameters. METHODS: The physicochemical characterization of unloaded and loaded NC with different coatings: (U-NC (P80), U-NC (PEG), U-NC (EUD), U-NC (CS), CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS)) were performed. After 9 days of incubation, eggs were treated (10 mL/kg eggs; via injection) with NC (unloaded and loaded with CUR) and CUR-solution. In sequence, hen's egg test-chorioallantoic membrane (HET-CAM), angiogenic assay, external abnormalities, weight of embryos and oxidative stress markers (TBARS, NPSH, ROS and CAT) were analyzed. RESULTS: CUR-NC (P80, PEG, EUD and CS) treatments caused antiangiogenic and non-teratogenic effects in chick embryo model. Still, CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS) did not alter markers of oxidative stress (TBARS, NPSH, CAT) studied. Only CUR-NC (EUD) caused increase in ROS levels. CONCLUSION: Wherefore, these findings of present study represent a advance in research of drug/nutraceutical delivery systems.


Asunto(s)
Curcumina/farmacología , Nanocápsulas , Estrés Oxidativo/efectos de los fármacos , Polímeros/química , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/toxicidad , Animales , Embrión de Pollo , Pollos , Membrana Corioalantoides/efectos de los fármacos , Curcumina/administración & dosificación , Curcumina/toxicidad , Sistemas de Liberación de Medicamentos , Huevos , Especies Reactivas de Oxígeno/metabolismo
5.
Neural Regen Res ; 16(4): 783-789, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33063743

RESUMEN

Alzheimer's disease (AD) is a progressive brain disorder and complex mechanisms are involved in the physiopathology of AD. However, there is data suggesting that inflammation plays a role in its development and progression. Indeed, some non-steroidal anti-inflammatory drugs, such as meloxicam, which act by inhibiting cyclooxygenase-2 (COX-2) have been used as neuroprotective agents in different neurodegenerative disease models. The purpose of this study was to investigate the effects of co-nanoencapsulated curcumin and meloxicam in lipid core nanocapsules (LCN) on cognitive impairment induced by amyloid-beta peptide injection in mice. LCN were prepared by the nanoprecipitation method. Male Swiss mice received a single intracerebroventricular injection of amyloid-beta peptide aggregates (fragment 25-35, 3 nmol/3 µL) or vehicle and were subsequently treated with curcumin-loaded LCN (10 mg/kg) or meloxicam-loaded LCN (5 mg/kg) or meloxicam + curcumin-co-loaded LCN (5 and 10 mg/kg, respectively). Treatments were given on alternate days for 12 days (i.e., six doses, once every 48 hours, by intragastric gavage). Our data showed that amyloid-beta peptide infusion caused long-term memory deficits in the inhibitory avoidance and object recognition tests in mice. In the inhibitory avoidance test, both meloxicam and curcumin formulations (oil or co-loaded LCN) improved amyloid-beta-induced memory impairment in mice. However, only meloxicam and curcumin-co-loaded LCN attenuated non-aversive memory impairment in the object recognition test. Moreover, the beneficial effects of meloxicam and curcumin-co-loaded LCN could be explained by the anti-inflammatory properties of these drugs through cortical COX-2 downregulation. Our study suggests that the neuroprotective potential of meloxicam and curcumin co-nanoencapsulation is associated with cortical COX-2 modulation. This study was approved by the Committee on Care and Use of Experimental Animal Resources, the Federal University of Pampa, Brazil (approval No. 02-2015) on April 16, 2015.

6.
Life Sci ; 256: 117892, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502538

RESUMEN

BACKGROUND: Organophosphorus pesticides exert their toxic effects mainly by the inhibition of acetylcholinesterase (AChE), which is related to emotional disorders, such as depression. Atropine-oximes therapy is commonly used; however, the efficacy of oximes in the reactivation of AChE has been inconsistent. The objective of this study was to investigate the possible neuroprotective effect of (3Z)-5-Chloro-3-(hydroxyimino)indolin-2-one (Cℓ-HIN), a compound that combines the isatin and oxime functional groups, in rats exposed to malathion. The effect of Cℓ-HIN on the AChE activity and the BDNF-Trkß pathway in the prefrontal cortex of malathion-exposed rats were tested. METHODS: Wistar male rats were co-treated with Cℓ-HIN [50 mg/kg (p.o.) (3 mL/kg)] and/or malathion [250 mg/kg (i.p.) (5 mL/kg)] and performed behavioral tests twelve hours after these exposures. RESULTS: The Cℓ-HIN reversed the increased immobility time in the forced swimming test and the decreased grooming time in the splash test induced by malathion, but any significant difference was observed in locomotion analysis. These results demonstrate the antidepressant-like effect of Cℓ-HIN. The cortical AChE activity was reactivated by Cℓ-HIN in rats exposed to malathion. Malathion induced an increase in Trkß and a decrease in BDNF levels in the prefrontal cortex of rats, which were avoided by Cℓ-HIN. CONCLUSION: These findings support the hypothesis that Cℓ-HIN is an AChE reactivator with antidepressant-like properties, which is related to the improvement of BDNF-Trkß signaling after acute exposure to malathion in rats. Thus, the results allow suggesting the potential use of Cℓ-HIN as an oxime-based therapy against the neurotoxic effects of malathion.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Indoles/farmacología , Malatión/toxicidad , Oxindoles/farmacología , Receptor trkB/metabolismo , Transducción de Señal , Animales , Antidepresivos/administración & dosificación , Antidepresivos/química , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Indoles/administración & dosificación , Indoles/química , Indoles/uso terapéutico , Masculino , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxindoles/administración & dosificación , Oxindoles/química , Oxindoles/uso terapéutico , Ratas Wistar , Transducción de Señal/efectos de los fármacos
7.
Basic Clin Pharmacol Toxicol ; 126(4): 399-410, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31694074

RESUMEN

The inhibition of acetylcholinesterase (AChE) is a common outcome caused by organophosphorus (OPs) intoxication. Although inconsistent, the standard treatment consists of a muscarinic receptor antagonist (atropine) and AChE-reactivating molecules such as oximes. This study proposes to test unpublished compounds which contain the moieties of isatin and/or oxime have protective effects against the toxicity induced by malathion in two animal models: Artemia salina and Rattus norvegicus (Wistar rats). The lethality was assessed in A salina, and the calculated LD50 to (3Z)-5-chloro-3-(hydroxyimino) indolin-2-one oxime (Cℓ-HIN) and 2-(5-chloro-2-oxoindolin-3-ylidene)-hydrazinecarbothioamide (Cℓ-OXHS) was higher than 1000 µM while to 3-(phenylhydrazono) butan-2-one oxime (PHBO) was 38 µM. Our screening showed that Cℓ-HIN seems to be the most promising molecule, with low toxicity to A salina, protection against mortality (with or without atropine) and AChE inhibition induced by malathion. Similarly, the oral administration of 300 mg/kg of Cℓ-HIN induced low or no toxicity in rats. The plasma butyrylcholinesterase (BChE) and cortical AChE activities were reactivated by Cℓ-HIN (50 mg/kg, p.o.) in rats exposed to malathion (250 mg/kg, i.p). No difference was observed in paraoxonase-1 (PON-1) activity among groups treated. In conclusion, Cℓ-HIN restored the cholinesterase activities inhibited by malathion in A salina and rats with low toxicity in both. Thus, the data provide evidence that Cℓ-HIN, a compound that combines isatin and oxime functional groups, is safe and has important properties to reactivate the cholinesterases inhibited by malathion. In addition, we demonstrate the importance of a preliminary assessment in an alternative model in order to reduce the use of mammalians in drug discovery.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Isatina/farmacología , Malatión/toxicidad , Oximas/farmacología , Animales , Artemia , Reactivadores de la Colinesterasa/administración & dosificación , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Femenino , Insecticidas/toxicidad , Isatina/administración & dosificación , Isatina/química , Dosificación Letal Mediana , Masculino , Oximas/administración & dosificación , Oximas/química , Ratas , Ratas Wistar
8.
Neuroscience ; 423: 122-130, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31698022

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by cognitive functions impairment. However, its symptomatology is complex and the depression is one of the most frequent behavioral changes in AD. AD pathology includes neuroinflammation and oxidative stress resulting in the Aß protein accumulation. Curcumin is a natural phenolic compound that shows antioxidant and anti-inflammatory properties. Nevertheless, therapeutic use of curcumin is limited due to its low bioavailability and biodistribution. In this context, the use of curcumin-loaded nanocapsules (NLC C) emerges to overcome its limitations. Thus, the present study investigated the effects of NLC C on the depressant-like behavior and oxidative stress induced by an animal model of AD. For this, Swiss male mice were divided into five groups. The Aß, Aß + NLC C and Aß + Curcumin groups received Aß25-35 aggregate (3 nmol/3 µL, i.c.v.). Control and NLC C groups received only vehicle. The NLC C were administered via gavage at a dose of 10 mg/kg in alternate days for 12 days. Our results demonstrated that Aß infusion induced a depressantant-like behavior observed in the tail suspension and forced swimming tests, which was reversed by NLC C treatment. No change was observed in mice locomotion. Furthermore, NLC C reduced the Aß-generated oxidative stress in the prefrontal cortex, evidenced by the increase in the reactive species levels, superoxide dismutase and catalase activities. Importantly, NLC C were more effective than the free curcumin. Thus, we demonstrated the antidepressant-like and antioxidant effects of NLC C in a mouse model of AD, suggesting its therapeutic potential for this disorder.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antidepresivos/farmacología , Antioxidantes/farmacología , Curcumina/farmacología , Depresión/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Animales , Escala de Evaluación de la Conducta , Catalasa/metabolismo , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación , Masculino , Ratones , Nanocápsulas , Fragmentos de Péptidos/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Superóxido Dismutasa/metabolismo
9.
Nutr Metab (Lond) ; 16: 61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31516541

RESUMEN

BACKGROUND: Organophosphorus pesticides (OP's) are heavily constituted in agriculture, gardens, home and veterinary and although it is useful, there are concerns about the environment, safety and health of human and animals. In this study, we investigated the effects of a new oxime, (3Z)-5-Chloro-3-(Hydroxyimino)indolin-2-one (OXIME) against the alterations induced by malathion, an OP insecticide, acute exposure on markers of hepatic damage, glucose homeostasis, oxidative stress in rats cholinesterase (ChE) activity in rats. METHODS: Adult male Wistar rats were divided into four groups: Control; Malathion; OXIME; and Malathion+OXIME. Twelve hours after co-treatment with malathion (250 mg/kg, i.p.) and/or OXIME (50 mg/kg, i.g.), the plasma and liver samples were collected for biochemical analyses. RESULTS: The OXIME blocked the increase of plasma markers of hepatic function (AST and ALP) and the enzymatic inhibition of catalase and glutathione reductase in the liver of malathion-treated rats. Moreover, the hepatic cholinesterases inhibition induced by malathion acute exposure was suppressed by OXIME treatment. As assessed, a single dose of OXIME lowered the glycemia levels and hepatic glycogen content enhanced by malathion. CONCLUSIONS: This study suggests promise effects of (3Z)-5-Chloro-3-(Hydroxyimino) indolin-2-one against the hyperglycemia and the hepatic damage induced by malathion acute exposure, as well as its use as a ChE activity reactivator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...