Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118405

RESUMEN

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/patología , Muerte Celular
2.
Commun Biol ; 5(1): 1068, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207615

RESUMEN

TGF-ß signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-ß exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-ß1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-ß-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-ß gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteína smad3/metabolismo , Carcinogénesis/genética , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , ARN , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682989

RESUMEN

Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Reprogramación Celular/genética , Epigénesis Genética , Epigenómica , Humanos , Sarcoma/genética , Sarcoma/terapia , Neoplasias de los Tejidos Blandos/terapia
4.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771714

RESUMEN

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

5.
Sci Rep ; 10(1): 1224, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988326

RESUMEN

The genetic etiology of childhood cancers still remains largely unknown. It is therefore essential to develop novel strategies to unravel the spectrum of pediatric cancer genes. Statistical network modeling techniques have emerged as powerful methodologies for enabling the inference of gene-disease relationship and have been performed on adult but not pediatric cancers. We performed a deep multi-layer understanding of pan-cancer transcriptome data selected from the Treehouse Childhood Cancer Initiative through a co-expression network analysis. We identified six modules strongly associated with pediatric tumor histotypes that were functionally linked to developmental processes. Topological analyses highlighted that pediatric cancer predisposition genes and potential therapeutic targets were central regulators of cancer-histotype specific modules. A module was related to multiple pediatric malignancies with functions involved in DNA repair and cell cycle regulation. This canonical oncogenic module gathered most of the childhood cancer predisposition genes and clinically actionable genes. In pediatric acute leukemias, the driver genes were co-expressed in a module related to epigenetic and post-transcriptional processes, suggesting a critical role of these pathways in the progression of hematologic malignancies. This integrative pan-cancer study provides a thorough characterization of pediatric tumor-associated modules and paves the way for investigating novel candidate genes involved in childhood tumorigenesis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Neoplasias/genética , Biomarcadores de Tumor/genética , Niño , Preescolar , Biología Computacional/métodos , Simulación por Computador , Bases de Datos Genéticas , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Humanos , Masculino , Modelos Estadísticos , Neoplasias/etiología , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/fisiología , Integración de Sistemas , Transcriptoma/genética
6.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658755

RESUMEN

Mesothelin is a membrane-associated protein overexpressed in pancreatic ductal adenocarcinoma (PDAC). Some mesothelin-targeted therapies are in clinical development but the identification of patients eligible for such therapies is still challenging. The objective of this study was to perform the imaging of mesothelin in mice models of PDAC with a technetium-labeled anti-mesothelin single-domain antibody (99mTc-A1). METHODS: The Cancer Genomic Atlas (TCGA) database was used to determine the prognostic role of mesothelin in PDAC. 99mTc-A1 was evaluated both in vitro in PDAC cells (SW1990 and AsPC-1) and in vivo in an experimental model of mesothelin-expressing PDAC (AsPC-1) in mice. RESULTS: TCGA analysis showed that PDAC patients with high mesothelin expression had a shorter overall survival (P = 0.00066). The binding of 99mTc-A1 was 2.1-fold greater in high-mesothelin-expressing AsPC-1 cells when compared to moderate-mesothelin-expressing SW1990 cells (p < 0.05). In vivo, the 99mTc-A1 uptake was 3.5-fold higher in AsPC-1-derived tumors as compared to a technetium-labeled irrelevant antibody (99mTc-Ctl) (p < 0.01). CONCLUSIONS: 99mTc-A1 accurately allows imaging of mesothelin-expressing experimental PDAC tumors. Our experiments paved the way for the development of a companion test for mesothelin-targeted therapies.

7.
Brain ; 142(1): 35-49, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508070

RESUMEN

Holoprosencephaly is a pathology of forebrain development characterized by high phenotypic heterogeneity. The disease presents with various clinical manifestations at the cerebral or facial levels. Several genes have been implicated in holoprosencephaly but its genetic basis remains unclear: different transmission patterns have been described including autosomal dominant, recessive and digenic inheritance. Conventional molecular testing approaches result in a very low diagnostic yield and most cases remain unsolved. In our study, we address the possibility that genetically unsolved cases of holoprosencephaly present an oligogenic origin and result from combined inherited mutations in several genes. Twenty-six unrelated families, for whom no genetic cause of holoprosencephaly could be identified in clinical settings [whole exome sequencing and comparative genomic hybridization (CGH)-array analyses], were reanalysed under the hypothesis of oligogenic inheritance. Standard variant analysis was improved with a gene prioritization strategy based on clinical ontologies and gene co-expression networks. Clinical phenotyping and exploration of cross-species similarities were further performed on a family-by-family basis. Statistical validation was performed on 248 ancestrally similar control trios provided by the Genome of the Netherlands project and on 574 ancestrally matched controls provided by the French Exome Project. Variants of clinical interest were identified in 180 genes significantly associated with key pathways of forebrain development including sonic hedgehog (SHH) and primary cilia. Oligogenic events were observed in 10 families and involved both known and novel holoprosencephaly genes including recurrently mutated FAT1, NDST1, COL2A1 and SCUBE2. The incidence of oligogenic combinations was significantly higher in holoprosencephaly patients compared to two control populations (P < 10-9). We also show that depending on the affected genes, patients present with particular clinical features. This study reports novel disease genes and supports oligogenicity as clinically relevant model in holoprosencephaly. It also highlights key roles of SHH signalling and primary cilia in forebrain development. We hypothesize that distinction between different clinical manifestations of holoprosencephaly lies in the degree of overall functional impact on SHH signalling. Finally, we underline that integrating clinical phenotyping in genetic studies is a powerful tool to specify the clinical relevance of certain mutations.


Asunto(s)
Holoprosencefalia/genética , Herencia Multifactorial/genética , Enfermedades Raras/genética , Estudios de Casos y Controles , Hibridación Genómica Comparativa , Exoma/genética , Femenino , Humanos , Masculino , Mutación , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...