Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chall ; 8(6): 2300078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868603

RESUMEN

Often, H2 is produced photocatalytically at the expense of sacrificial agents. When a sacrificial agent is selectively oxidized, this allows coupling of H2 production with synthesis of value-added organic compounds. Herein, it is argued that the conversion of bioethanol into 1,1-diethoxyethane with simultaneous H2 production increases the economic viability of photocatalysis and suggests a semiconductor material that is the most relevant for this purpose.

3.
Nat Commun ; 14(1): 7104, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925550

RESUMEN

Organic semiconductors, such as carbon nitride, when employed as powders, show attractive photocatalytic properties, but their photoelectrochemical performance suffers from low charge transport capability, charge carrier recombination, and self-oxidation. High film-substrate affinity and well-designed heterojunction structures may address these issues, achieved through advanced film generation techniques. Here, we introduce a spin coating pretreatment of a conductive substrate with a multipurpose polymer and a supramolecular precursor, followed by chemical vapor deposition for the synthesis of dual-layer carbon nitride photoelectrodes. These photoelectrodes are composed of a porous microtubular top layer and an interlayer between the porous film and the conductive substrate. The polymer improves the polymerization degree of carbon nitride and introduces C-C bonds to increase its electrical conductivity. These carbon nitride photoelectrodes exhibit state-of-the-art photoelectrochemical performance and achieve high yield in C-H functionalization. This carbon nitride photoelectrode synthesis strategy may be readily adapted to other reported processes to optimize their performance.

4.
Nat Commun ; 14(1): 7684, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001091

RESUMEN

Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.

5.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986204

RESUMEN

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

6.
Nat Commun ; 14(1): 5668, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704640

RESUMEN

For decarbonization of ammonia production in industry, alternative methods by exploiting renewable energy sources have recently been explored. Nonetheless, they still lack yield and efficiency to be industrially relevant. Here, we demonstrate an advanced approach of nitrogen fixation to synthesize ammonia at ambient conditions via laser-induced multiphoton dissociation of lithium oxide. Lithium oxide is dissociated under non-equilibrium multiphoton absorption and high temperatures under focused infrared light, and the generated zero-valent metal spontaneously fixes nitrogen and forms a lithium nitride, which upon subsequent hydrolysis generates ammonia. The highest ammonia yield rate of 30.9 micromoles per second per square centimeter is achieved at 25 °C and 1.0 bar nitrogen. This is two orders of magnitude higher than state-of-the-art ammonia synthesis at ambient conditions. The focused infrared light here is produced by a commercial simple CO2 laser, serving as a demonstration of potentially solar pumped lasers for nitrogen fixation and other high excitation chemistry. We anticipate such laser-involved technology will bring unprecedented opportunities to realize not only local ammonia production but also other new chemistries .

7.
ACS Sustain Chem Eng ; 11(13): 5284-5292, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37034497

RESUMEN

Efficient catalytic methods for the trifluoromethylation of (hetero)arenes are of particular importance in organic and pharmaceutical manufacturing. However, many existing protocols rely on toxic reagents and expensive or sterically hindered homogeneous catalysts. One promising alternative to conduct this transformation involves the use of carbon nitride, a non-toxic photocatalyst prepared from inexpensive precursors. Nonetheless, there is still little understanding regarding the interplay between physicochemical features of this photocatalyst and the corresponding effects on the reaction rate. In this work, we elucidate the role of carbon nitride nanostructuring on the catalytic performance, understanding the effect of surface area and band gap tuning via metal insertion. Our findings provide new insights into the structure-function relationships of the catalyst, which we exploit to design a continuous-flow process that maximizes catalyst-light interaction, facilitates catalyst reusability, and enables intensified reaction scale-up. This is particularly significant given that photocatalyzed batch protocols often face challenges during industrial exploitation. Finally, we extrapolate the rapid and simplified continuous-flow method to the synthesis of a variety of functionalized heteroaromatics, which have numerous applications in the pharmaceutical and fine chemical industries.

8.
Angew Chem Int Ed Engl ; 62(13): e202218717, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36728627

RESUMEN

The aqueous electrocatalytic reduction of NO3 - into NH3 (NitrRR) presents a sustainable route applicable to NH3 production and potentially energy storage. However, the NitrRR involves a directly eight-electron transfer process generally required a large overpotential (<-0.2 V versus reversible hydrogen electrode (vs. RHE)) to reach optimal efficiency. Here, inspired by biological nitrate respiration, the NitrRR was separated into two stages along a [2+6]-electron pathway to alleviate the kinetic barrier. The system employed a Cu nanowire catalyst produces NO2 - and NH3 with current efficiencies of 91.5 % and 100 %, respectively at lower overpotentials (>+0.1 vs. RHE). The high efficiency for such a reduction process was further explored in a zinc-nitrate battery. This battery could be specified by a high output voltage of 0.70 V, an average energy density of 566.7 Wh L-1 at 10 mA cm-2 and a power density of 14.1 mW cm-2 , which is well beyond all previously reported similar concepts.

9.
Angew Chem Int Ed Engl ; 62(18): e202301815, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36852584

RESUMEN

Graphitic carbon nitride (g-CN) is a transition metal free semiconductor that mediates a variety of photocatalytic reactions. Although photoinduced electron transfer is often postulated in the mechanism, proton-coupled electron transfer (PCET) is a more favorable pathway for substrates possessing X-H bonds. Upon excitation of an (sp2 )N-rich structure of g-CN with visible light, it behaves as a photobase-it undergoes reductive quenching accompanied by abstraction of a proton from a substrate. The results of modeling allowed us to identify active sites for PCET-the 'triangular pockets' on the edge facets of g-CN. We employ excited state PCET from the substrate to g-CN to selectively cleavethe endo-(sp3 )C-H bond in oxazolidine-2-ones followed by trapping the radical with O2 . This reaction affords 1,3-oxazolidine-2,4-diones. Measurement of the apparent pKa value and modeling suggest that g-CN excited state can cleave X-H bonds that are characterized by bond dissociation free energy (BDFE) ≈100 kcal mol-1 .

10.
Adv Sci (Weinh) ; 10(13): e2300099, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36815368

RESUMEN

Materials dictate carbon neutral industrial chemical processes. Visible-light photoelectrocatalysts from abundant resources will play a key role in exploiting solar irradiation. Anionic doping via pre-organization of precursors and further co-polymerization creates tuneable semiconductors. Triazole derivative-purpald, an unexplored precursor with sulfur (S) container, combined in different initial ratios with melamine during one solid-state polycondensation with two thermal steps yields hybrid S-doped carbon nitrides (C3 N4 ). The series of S-doped/C3 N4 -based materials show enhanced optical, electronic, structural, textural, and morphological properties and exhibit higher performance in organic benzylamine photooxidation, oxygen evolution, and similar energy storage (capacitor brief investigation). 50M-50P exhibits the highest photooxidation conversion (84 ± 3%) of benzylamine to imine at 535 nm - green light for 48 h, due to a discrete shoulder (≈700) nm, high sulfur content, preservation of crystal size, new intraband energy states, structural defects by layer distortion, and 10-16 nm pores with arbitrary depth. This work innovates by studying the concomitant relationships between: 1) the precursor decomposition while C3 N4 is formed, 2) the insertion of S impurities, 3) the S-doped C3 N4 property-activity relationships, and 4) combinatorial surface, bulk, structural, optical, and electronic characterization analysis. This work contributes to the development of disordered long-visible-light photocatalysts for solar energy conversion and storage.

11.
ACS Omega ; 7(45): 41581-41585, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406529

RESUMEN

Aza-pinacol coupling of N-benzyl-1-phenylmethanimine using Zn dust affords a mixture of R,S- or R,R-diastereomers in a 1:1 ratio. The R,S-diastereomer is solid with an m.p. of 135 °C, while the R,R-diastereomer is liquid at room temperature. The configuration of stereocenters was determined by combining X-ray powder diffraction and density functional theory (DFT) modeling.

12.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

13.
ChemistryOpen ; 11(7): e202200095, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35822918

RESUMEN

Triethanolamine (TEOA) is one of the most commonly used sacrificial agents in photocatalysis. Due to its more complex structure compared to, for example, ethanol, and its sacrificial role in photocatalysis, it gives a mixture of products. The structures of these molecules are not usually analyzed. Herein, we obtain and isolate the products of TEOA and N-tert-butyl diethanolamine oxygenation under photocatalytic conditions with ≈15 % yield, and followingly characterized them by NMR and mass spectroscopy. The reaction is mediated by potassium poly(heptazine imide) (K-PHI) in the presence of O2 and affords formyl esters of ß-hydroxyethylene formamides from the corresponding ethanolamines.


Asunto(s)
Etanolaminas , Nitrilos , Etanol , Etanolaminas/química , Nitrilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...