Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118733, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32731147

RESUMEN

Plastic materials are increasingly becoming part of private and public collections worldwide, either as design objects or artistic sculptures. The preservation of these highly degradable materials requires novel analytical approaches able to reveal their chemical composition to inform the tailoring of appropriate conservation procedures. In this work Raman spectroscopy and Surface-enhanced Raman Scattering (SERS) were proposed as methods for the characterization of ABS-based contemporary and historical LEGO® objects. Twenty-three objects of twelve different colors were analyzed by handheld and benchtop Raman instrumentation. In all cases clear identification of the constituent polymer matrices (ABS, polycarbonate, poly(methyl metacrylate)) was obtained. In addition, identification of major color components was achieved, such as copper phthalocyanines in green and blue objects. Low cost handheld instrumentation provided acceptable sensitivity towards polymers and coloring media, and was found suitable for initial screening of the objects. Benchtop Raman was used to confirm and further extend identification, as well as for building background information. Finally, SERS sensitivity was found comparable to the sensitivity achieved by benchtop Raman instrumentation. However, the associated minimally-invasive sampling method made SERS a valid alternative to direct Raman spectroscopy for the analysis of immovable and/or large-sized objects. Overall, this work represents the first systematic investigation on the potential of Raman and SERS spectroscopies as methods for minimal invasive and/or in situ analysis of historical and contemporary plastic objects.

2.
Front Chem ; 7: 727, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31709241

RESUMEN

Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) were applied to the analysis of blue and black writing inks. SERS was performed by application of plasmonic nanopastes constituted by Ag nanoparticles and Au nanorods directly on inks deposited on paper substrates under laser irradiation of 514 nm. It was found that SERS spectra were largely enhanced compared to Raman spectra and that Ag nanopastes produced much larger enhancements than Au nanopastes, due to a combination of plasmonic resonance, charge transfer, and molecular resonance effects. All analyzed writing inks resulted constituted by Crystal Violet and other triarylmethane dye mixtures, to which sometimes phthalocyanine dyes were also added (for example in Bic pens). SERS was also used for the identification of degradation processes occurring in artificially aged blue pens deposited on paper substrates. It was found that color alteration changed from ink to ink and varied from darkening to discoloration to slight fading, depending on the initial chemical composition. For inks containing Crystal Violet, two mechanisms associated to de-methylation and photo-reduction of excited dye to colorless leuco forms were identified.

3.
Talanta ; 181: 448-453, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29426539

RESUMEN

The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections.

4.
RSC Adv ; 8(15): 8365-8371, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35542010

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) has been identified as a suitable technique for the analysis of colorants in works of art. Herein, the application of SERS to the identification of dye compositions in historical felt-tip pens is reported, which is of paramount importance for the development of appropriate conservation protocols for historical drawings. In this study, three pens (pink, green, and blue colors) belonging to the film director Federico Fellini were analyzed. SERS measurements were performed directly on the pen lines drawn on a commercial paper by the deposition of Ag colloidal pastes, which allowed fast in situ dye identification without the need for extraction or hydrolysis treatments. Eosin Y was identified as the only dye present in the pink pen ink, whereas erioglaucine was found to be the main dye component in green and blue pen inks. SERS also resulted in highly efficient identification of the individual dyes erioglaucine, crystal violet, and rhodamine present as a mixture in the blue pen ink. The high SERS sensitivity was ascribed to the plasmonic effects and efficient quenching of the fluorescence interference of dyes. A comparison with contemporary pen inks highlighted minor differences in the chemical composition. These results prove that SERS can be used as a fast and sensitive analytical tool for ink analysis that provides invaluable support for the general assessment of the date, provenance, and originality of the historical drawings as well as for the development of preventive conservation protocols.

5.
Anal Chim Acta ; 843: 59-72, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25150697

RESUMEN

Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-µFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 µm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time.

6.
Anal Chim Acta ; 822: 51-9, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24725747

RESUMEN

For more than a century, the analyses of painting fragments have been carried out mainly through the preparation of thick resin-embedded cross-sections. Taking into account the development of innovative micro-analytical imaging techniques, alternatives to this standard preparation method are considered. Consequently, dedicated efforts are required to develop preparation protocols limiting the risks of chemical interferences (solubilisation, reduction/oxidation or other reactions) which modify the sample during its preparation, as well as the risks of analytical interferences (overlap of detected signals coming from the sample and from materials used in the preparation). This study focuses particularly on the preparation of thin-sections (1-20 µm) for single or combined fourier transform infrared (FTIR) spectroscopy and X-ray 2D micro-analysis. A few strategies specially developed for the µFTIR analysis of painting cross-sections have already been reported and their potential extrapolation to the preparation of thin-sections is discussed. In addition, we propose two new specific methods: (i) the first is based on a free-embedding approach, ensuring a complete chemical and analytical neutrality. It is illustrated through application on polymeric design objects corpus; (ii) the second is based on a barrier coating approach which strengthens the sample and avoids the penetration of the resin into the sample. The barrier coating investigated is a silver chloride salt, an infrared transparent material, which remains malleable and soft after pellet compression, enabling microtoming. This last method was successfully applied to the preparation of a fragment from a gilded Chinese sculpture (15th C.) and was used to unravel a unique complex stratigraphy when combining µFTIR and µXRF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...