Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755661

RESUMEN

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Asunto(s)
Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 2 de la Rapamicina , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteína Asociada al mTOR Insensible a la Rapamicina , Humanos , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Resistencia a Antineoplásicos/genética , Ratones , Animales , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Mutación , Regulación hacia Abajo , Proteómica/métodos
2.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316991

RESUMEN

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Asunto(s)
Neoplasias de la Próstata , Canales Catiónicos TRPM , Humanos , Masculino , Andrógenos , Inflamación/genética , Factor 3 Regulador del Interferón , Proteínas de la Membrana , FN-kappa B/genética , Neoplasias de la Próstata/genética , Receptor Toll-Like 3/genética , Canales Catiónicos TRPM/genética , Animales
3.
CRISPR J ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165445

RESUMEN

Genome-wide genetic screens using CRISPR-guide RNA libraries are widely performed in mammalian cells to functionally characterize individual genes and for the discovery of new anticancer therapeutic targets. As the effectiveness of such powerful and precise tools for cancer pharmacogenomics is emerging, tools and methods for their quality assessment are becoming increasingly necessary. Here, we provide an R package and a high-quality reference data set for the assessment of novel experimental pipelines through which a single calibration experiment has been executed: a screen of the HT-29 human colorectal cancer cell line with a commercially available genome-wide library of single-guide RNAs. This package and data allow experimental researchers to benchmark their screens and produce a quality-control report, encompassing several quality and validation metrics. The R code used for processing the reference data set, for its quality assessment, as well as to evaluate the quality of a user-provided screen, and to reproduce the figures presented in this article is available at https://github.com/DepMap-Analytics/HT29benchmark. The reference data is publicly available on FigShare.

4.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123597

RESUMEN

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ácido Mevalónico/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Colesterol/metabolismo , Movimiento Celular
5.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944530

RESUMEN

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Asunto(s)
COVID-19 , Humanos , Monocitos , Pandemias , Receptor para Productos Finales de Glicación Avanzada/genética , SARS-CoV-2
6.
FEBS Lett ; 597(15): 1921-1927, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487655

RESUMEN

The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Europa (Continente)
7.
J Exp Clin Cancer Res ; 42(1): 20, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639824

RESUMEN

BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , MicroARNs , Humanos , Animales , Ratones , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Mama/patología , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo , Microambiente Tumoral
8.
Oncoimmunology ; 11(1): 2086752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756841

RESUMEN

Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors invivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Receptor Toll-Like 2 , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Noqueados , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
9.
Cancer Lett ; 534: 215612, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35259458

RESUMEN

21q22.2-3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5-30% of tumor precursor lesions - High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3ß-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Proteínas de Homeodominio , Próstata , Neoplasias de la Próstata , Factores de Transcripción , Regulador Transcripcional ERG , Animales , Inestabilidad Genómica , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Homeodominio/genética , Masculino , Ratones , Proteínas Oncogénicas , Próstata/patología , Neoplasias de la Próstata/patología , Transactivadores/metabolismo , Factores de Transcripción/genética , Regulador Transcripcional ERG/genética
10.
Oncogene ; 41(10): 1456-1467, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35042959

RESUMEN

In the tumor microenvironment, Cancer Associated Fibroblasts (CAFs) become activated by cancer cells and increase their secretory activity to produce soluble factors that contribute to tumor cells proliferation, invasion and dissemination to distant organs. The pro-tumorigenic transcription factor STAT3 and its canonical inducer, the pro-inflammatory cytokine IL-6, act conjunctly in a positive feedback loop that maintains high levels of IL-6 secretion and STAT3 activation in both tumor and stromal cells. Here, we demonstrate that STAT3 is essential for the pro-tumorigenic functions of murine breast cancer CAFs both in vitro and in vivo, and identify a STAT3 signature significantly enriched for genes encoding for secreted proteins. Among these, ANGPTL4, MMP13 and STC-1 were functionally validated as STAT3-dependent mediators of CAF pro-tumorigenic functions by different approaches. Both in vitro and in vivo CAFs activities were moreover impaired by MMP13 inhibition, supporting the feasibility of a therapeutic approach based on inhibiting STAT3-induced CAF-secreted proteins. The clinical potential of such an approach is supported by the observation that an equivalent CAF-STAT3 signature in humans is expressed at high levels in breast cancer stromal cells and characterizes patients with a shorter disease specific survival, including those with basal-like disease.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Glicoproteínas , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/genética
11.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852877

RESUMEN

BACKGROUND: Biological networks are often used to describe the relationships between relevant entities, particularly genes and proteins, and are a powerful tool for functional genomics. Many important biological problems can be investigated by comparing biological networks between different conditions or networks obtained with different techniques. FINDINGS: We show that contrast subgraphs, a recently introduced technique to identify the most important structural differences between 2 networks, provide a versatile tool for comparing gene and protein networks of diverse origin. We demonstrate the use of contrast subgraphs in the comparison of coexpression networks derived from different subtypes of breast cancer, coexpression networks derived from transcriptomic and proteomic data, and protein-protein interaction networks assayed in different cell lines. CONCLUSIONS: These examples demonstrate how contrast subgraphs can provide new insight in functional genomics by extracting the gene/protein modules whose connectivity is most altered between 2 conditions or experimental techniques.


Asunto(s)
Perfilación de la Expresión Génica , Proteómica , Línea Celular , Redes Reguladoras de Genes , Genómica
12.
J Neurochem ; 162(1): 9-23, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34729786

RESUMEN

Psychedelic drugs are gaining attention from the scientific community as potential new compounds for the treatment of psychiatric diseases such as mood and substance use disorders. The 5-HT2A receptor has been identified as the main molecular target, and early studies pointed to an effect on the expression of neuroplasticity genes. Analysing RNA-seq data from the prefrontal cortex of rats chronically treated with lysergic acid diethylamide (LSD), we describe the psychedelic-induced rewiring of gene co-expression networks, which become less centralised but more complex, with an overall increase in signalling entropy typical of highly plastic systems. Intriguingly, signalling entropy mirrors, at the molecular level, the increased brain entropy reported through neuroimaging studies in human, suggesting the underlying mechanisms of higher-order phenomena. Moreover, from the analysis of network topology, we identify potential transcriptional regulators and propose the involvement of different cell types in psychedelics' activity.


Asunto(s)
Alucinógenos , Dietilamida del Ácido Lisérgico , Animales , Encéfalo , Entropía , Alucinógenos/metabolismo , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Dietilamida del Ácido Lisérgico/metabolismo , Dietilamida del Ácido Lisérgico/farmacología , Corteza Prefrontal/metabolismo , Ratas
13.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34282769

RESUMEN

Transcriptome data provide a valuable resource for the study of cancer molecular mechanisms, but technical biases, sample heterogeneity, and small sample sizes result in poorly reproducible lists of regulated genes. Additionally, the presence of multiple cellular components contributing to cancer development complicates the interpretation of bulk transcriptomic profiles. To address these issues, we collected 48 microarray datasets derived from laser capture microdissected stroma or epithelium in breast tumors and performed a meta-analysis identifying robust lists of differentially expressed genes. This was used to create a database with carefully harmonized metadata that we make freely available to the research community. As predicted, combining the results of multiple datasets improved statistical power. Moreover, the separate analysis of stroma and epithelium allowed the identification of genes with different contributions in each compartment, which would not be detected by bulk analysis due to their distinct regulation in the two compartments. Our method can be profitably used to help in the discovery of biomarkers and the identification of functionally relevant genes in both the stroma and the epithelium. This database was made to be readily accessible through a user-friendly web interface.

14.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322692

RESUMEN

Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes' mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.


Asunto(s)
Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes , Neoplasias/metabolismo , Transducción de Señal/genética , Algoritmos , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Neoplasias/genética , Transcriptoma/genética
15.
Am J Cancer Res ; 10(12): 4308-4324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33415001

RESUMEN

The p140Cap adaptor protein, encoded by the SRCIN1 gene, negatively controls tumor progression, as demonstrated in the subgroup of HER2-amplified breast cancers and in neuroblastoma patients, where high p140Cap expression predicts a decreased probability of developing metastasis, with a significantly prolonged survival. In NeuT mice, a preclinical model or Her2-positive breast cancer, we previously reported that p140Cap counteracts Her2-dependent breast cancer progression, associating with the specific Rac1 Guanine Nucleotide Exchange Factor, Tiam1, and limiting the activation of both Tiam1 and Rac1. Here, we show that in TUBO breast cancer cells derived from the NeuT tumors, p140Cap expression causes Tiam1 redistribution along the apicobasal junctional axis. Furthermore, p140Cap and Tiam1 interact with E-cadherin, a member of the adherence junction, with a concomitant increase of E-cadherin at the cell membrane. We characterized biochemically the interaction between p140Cap and Tiam1, showing that the amino terminal region of p140Cap (1-287 amino acids) is sufficient to associate with full length Tiam1, and with the truncated catalytic domain of Tiam1, with a concomitant decrease of the Tiam1 activity. Moreover, in a large cohort of Her2 positive breast cancer, high levels of SRCIN1 expression positively correlates with increased survival in patients with high TIAM1 expression. Overall, our findings sustain a protective role of p140Cap in Her2 positive breast cancer, where p140Cap can associate with Tiam1 and negatively regulate the Tiam1/Rac1 axis.

16.
BMC Genomics ; 20(1): 898, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775605

RESUMEN

Following the publication of this article [1], the authors reported that the images of Figs. 1, 2 and 3 were published in the incorrect order, whereby they mismatch with their captions.

17.
Cancers (Basel) ; 11(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654518

RESUMEN

Breast cancer is a heterogeneous disease whose clinical management is very challenging. Although specific molecular features characterize breast cancer subtypes with different prognosis, the identification of specific markers predicting disease outcome within the single subtypes still lags behind. Both the non-canonical Wingless-type MMTV Integration site (WNT) and the Signal Transducer and Activator of Transcription (STAT)3 pathways are often constitutively activated in breast tumors, and both can induce the small GTPase Ras Homolog Family Member U RhoU. Here we show that RhoU transcription can be triggered by both canonical and non-canonical WNT ligands via the activation of c-JUN N-terminal kinase (JNK) and the recruitment of the Specificity Protein 1 (SP1) transcription factor to the RhoU promoter, identifying for the first time SP1 as a JNK-dependent mediator of WNT signaling. RhoU down-regulation by silencing or treatment with JNK, SP1 or STAT3 inhibitors leads to impaired migration and invasion in basal-like MDA-MB-231 and BT-549 cells, suggesting that STAT3 and SP1 can cooperate to induce high RhoU expression and enhance breast cancer cells migration. Moreover, in vivo concomitant binding of STAT3 and SP1 defines a subclass of genes belonging to the non-canonical WNT and the Interleukin (IL)-6/STAT3 pathways and contributing to breast cancer aggressiveness, suggesting the relevance of developing novel targeted therapies combining inhibitors of the STAT3 and WNT pathways or of their downstream mediators.

18.
Cell Rep ; 26(4): 815-824.e4, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30673604

RESUMEN

Conventional human embryonic stem cells are considered to be primed pluripotent but can be induced to enter a naive state. However, the transcriptional features associated with naive and primed pluripotency are still not fully understood. Here we used single-cell RNA sequencing to characterize the differences between these conditions. We observed that both naive and primed populations were mostly homogeneous with no clear lineage-related structure and identified an intermediate subpopulation of naive cells with primed-like expression. We found that the naive-primed pluripotency axis is preserved across species, although the timing of the transition to a primed state is species specific. We also identified markers for distinguishing human naive and primed pluripotency as well as strong co-regulatory relationships between lineage markers and epigenetic regulators that were exclusive to naive cells. Our data provide valuable insights into the transcriptional landscape of human pluripotency at a cellular and genome-wide resolution.


Asunto(s)
Epigénesis Genética , Células Madre Embrionarias Humanas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos
20.
BMC Genomics ; 18(1): 693, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874118

RESUMEN

BACKGROUND: The short-lived fish Nothobranchius furzeri is the shortest-lived vertebrate that can be cultured in captivity and was recently established as a model organism for aging research. Small non-coding RNAs, especially miRNAs, are implicated in age dependent control of gene expression. RESULTS: Here, we present a comprehensive catalogue of miRNAs and several other non-coding RNA classes (ncRNAs) for Nothobranchius furzeri. Analyzing multiple small RNA-Seq libraries, we show most of these identified miRNAs are expressed in at least one of seven Nothobranchius species. Additionally, duplication and clustering of N. furzeri miRNAs was analyzed and compared to the four fish species Danio rerio, Oryzias latipes, Gasterosteus aculeatus and Takifugu rubripes. A peculiar characteristic of N. furzeri, as compared to other teleosts, was a duplication of the miR-29 cluster. CONCLUSION: The completeness of the catalogue we provide is comparable to that of the zebrafish. This catalogue represents a basis to investigate the role of miRNAs in aging and development in this species.


Asunto(s)
Ciprinodontiformes/genética , Ciprinodontiformes/fisiología , Biblioteca de Genes , Longevidad/genética , MicroARNs/genética , ARN no Traducido/genética , Envejecimiento/genética , Animales , Duplicación de Gen , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...