Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(5): 2193-2208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095198

RESUMEN

Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Ecosistema , Fitoplancton , Fotosíntesis/fisiología , Frío
2.
J Exp Biol ; 226(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728502

RESUMEN

Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a ß-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in ß-alanine, which inhibits cardiomyocyte taurine uptake. Cardiac taurine levels were reduced by 21% and stress-induced changes in normal taurine handling were observed in TD brook char. Responses to exhaustive exercise and acute thermal and hypoxia tolerance were then assessed using a combination of in vivo, in vitro and biochemical approaches. Critical thermal maximum was higher in TD brook char despite significant reductions in maximum heart rate. In vivo, TD brook char exhibited a lower resting heart rate, blunted hypoxic bradycardia and a severe reduction in time to loss of equilibrium under hypoxia. In vitro function was similar between control and TD hearts under oxygenated conditions, but stroke volume and cardiac output were severely compromised in TD hearts under severe hypoxia. Aspects of mitochondrial structure and function were also impacted in TD permeabilized cardiomyocytes, but overall effects were modest. High levels of intracellular taurine are required to achieve maximum cardiac function in brook char and cardiac taurine efflux may be necessary to support heart function under stress. Taurine appears to play a vital, previously unrecognized role in supporting cardiovascular function and stress tolerance in fish.


Asunto(s)
Taurina , Trucha , Animales , Trucha/fisiología , Temperatura , Miocitos Cardíacos , Hipoxia
3.
Sci Total Environ ; 826: 154152, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35227725

RESUMEN

Apart from viruses and bacteria, cyanobacteria and microalgae present in the atmosphere may pose a threat to the health of humans by inducing illnesses and diseases. Yet, they play an important role in the environment, influencing the Earth's radiation budget by absorbing and scattering solar radiation. The present study determined the daily and seasonal qualitative and qualitative variabilities of airborne cyanobacteria and microalgae during both vegetative and non-vegetative seasons in the coastal zone of the Baltic Sea. Samples were collected from January to December 2020 with a Tisch six-stage microbiological impactor which was used as a substitute for the respiratory tract. The stage levels of the impactor represented the respiratory tract and reproduced lung penetration by airborne particles, which allowed us to assess penetration of cyanobacteria and microalgae to the deepest parts of the human respiratory system. A total of 296 samples of cyanobacteria and microalgae were collected during the day and 276 samples during the night. The results showed that cyanobacteria and microalgae were present in the air all year, and their maximum abundance was 1685 cells m-3 in July. Furthermore, the ability of these microorganisms to produce the toxin microcystin-LR (MC-LR) was confirmed, which has a high potential negative impact on human health. MC-LR has been found in Nostoc sp., Pseudanabaena sp., Leptolyngbya sp., Synechococcus sp., Gloeocapsa sp., Aphanothece sp., and Rivularia sp. maintained at our Culture Collection of Airborne Algae (CCAA), as well as from air samples. The highest concentrations of MC-LR were recorded in airborne Synechococcus sp. CCAA 46 and amounted to as much as 420 fg cell-1. In turn, the highest mean concentration of 0.95 µg L-1 for MC-LR was recorded in an air sample taken in May. This research expands the knowledge on cyanobacteria and microalgae present in the atmosphere in the coastal zone of the southern Baltic Sea. We propose these microorganisms be used as indicators for further research on bioaerosols, which are potentially dangerous to human health.


Asunto(s)
Cianobacterias , Microalgas , Países Bálticos , Humanos , Microcistinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...