Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298634

RESUMEN

The onset of an adaptive immune response provides the signals required for differentiation of antigen-specific lymphocytes into effector cells and imprinting of these cells for re-circulation to the most appropriate anatomical site (i.e., homing). Lymphocyte homing is governed by the expression of tissue-specific lymphocyte homing receptors that bind to unique tissue-specific ligands on endothelial cells. In this study, a whole-parasite malaria vaccine (radiation-attenuated sporozoites (RAS)) was used as a model system to establish homing receptor signatures induced by the parasite delivered through mosquito bite to provide a benchmark of desirable homing receptors for malaria vaccine developers. This immunization regimen resulted in the priming of antigen-specific B cells and CD8+ T cells for homing primarily to the skin and T/B cell compartments of secondary lymphoid organs. Infection with live sporozoites, however, triggers the upregulation of homing receptor for the liver and the skin, demonstrating that there is a difference in the signal provided by attenuated vs. live sporozoites. This is the first report on imprinting of homing routes by Plasmodium sporozoites and, surprisingly, it also points to additional, yet to be identified, signals provided by live parasites that prime lymphocytes for homing to the liver. The data also demonstrate the utility of this method for assessing the potential of vaccine formulations to direct antigen-specific lymphocytes to the most relevant anatomical site, thus potentially impacting vaccine efficacy.

2.
Vaccine ; 40(31): 4270-4280, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35697572

RESUMEN

Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Norovirus , Animales , Anticuerpos Antiprotozoarios , Epítopos , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum , Proteínas Protozoarias/genética , Esporozoítos
3.
Front Immunol ; 13: 1026052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591298

RESUMEN

The secreted malarial protein, Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS), is highly conserved among Plasmodium species, and plays a role in the invasion of mosquito midgut cells and hepatocytes in the vertebrate host. CelTOS was identified as a potential protective antigen based on a proteomic analysis, which showed that CelTOS stimulated significant effector T cells producing IFN-γ in peripheral blood mononuclear cells (PBMCs) from radiation attenuated sporozoite-immunized, malaria-naïve human subjects. In a rodent malaria model, recombinant full-length CelTOS protein/adjuvant combinations induced sterile protection, and in several studies, functional antibodies were produced that had hepatocyte invasion inhibition and transmission-blocking activities. Despite some encouraging results, vaccine approaches using CelTOS will require improvement before it can be considered as an effective vaccine candidate. Here, we report on the use of mRNA vaccine technology to induce humoral and cell-mediated immune responses using this antigen. Several pfceltos encoding mRNA transcripts were assessed for the impact on protein translation levels in vitro. Protein coding sequences included those to evaluate the effects of signal sequence, N-glycosylation on translation, and of nucleoside substitutions. Using in vitro transfection experiments as a pre-screen, we assessed the quality of the expressed CelTOS target relative to the homogeneity, cellular localization, and durability of expression levels. Optimized mRNA transcripts, which demonstrated highest protein expression levels in vitro were selected for encapsulation in lipid nanoparticles (LNP) and used to immunize mice to assess for both humoral and cellular cytokine responses. Our findings indicate that mRNA transcripts encoding pfceltos while potent for inducing antigen-specific cellular cytokine responses in mice, were less able to mount PfCelTOS-specific antibody responses using a two-dose regimen. An additional booster dose was needed to overcome low seroconversion rates in mice. With respect to antibody fine specificities, N-glycosylation site mutated immunogens yielded lower immune responses, particularly to the N-terminus of the molecule. While it remains unclear the impact on CelTOS antigen as immunogen, this study highlights the need to optimize antigen design for vaccine development.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Animales , Ratones , Esporozoítos/genética , Proteínas Protozoarias , Leucocitos Mononucleares , Proteómica , Plasmodium falciparum , Antígenos de Protozoos , Malaria/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos Antiprotozoarios , Citocinas/metabolismo
4.
NPJ Vaccines ; 6(1): 84, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145286

RESUMEN

Human malaria affects the vast majority of the world's population with the Plasmodium falciparum species causing the highest rates of morbidity and mortality. With no licensed vaccine and leading candidates achieving suboptimal protection in the field, the need for an effective immunoprophylactic option continues to motivate the malaria research community to explore alternative technologies. Recent advances in the mRNA discipline have elevated the long-neglected platform to the forefront of infectious disease research. As the immunodominant coat protein of the invasive stage of the malaria parasite, circumsporozoite protein (PfCSP) was selected as the antigen of choice to assess the immunogenic and protective potential of an mRNA malaria vaccine. In mammalian cell transfection experiments, PfCSP mRNA was well expressed and cell associated. In the transition to an in vivo murine model, lipid nanoparticle (LNP) encapsulation was applied to protect and deliver the mRNA to the cell translation machinery and supply adjuvant activity. The immunogenic effect of an array of factors was explored, such as formulation, dose, number, and interval of immunizations. PfCSP mRNA-LNP achieved sterile protection against infection with two P. berghei PfCSP transgenic parasite strains, with mRNA dose and vaccination interval having a greater effect on outcome. This investigation serves as the assessment of pre-erythrocytic malaria, PfCSP mRNA vaccine candidate resulting in sterile protection, with numerous factors affecting protective efficacy, making it a compelling candidate for further investigation.

5.
Malar J ; 18(1): 186, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142328

RESUMEN

BACKGROUND: Whole parasite vaccination is an efficacious strategy to induce sterile immunity and to prevent malaria transmission. Understanding the mechanism and response of immune cells to vaccines plays a critical role in deciphering correlates of protection against infection and disease. Immunoassays, such as ELISpot, are commonly used to assess the immunogenicity of vaccines towards T cells and B cells. To date, these assays only analyse responses to specific antigens since they are based on recombinant parasite-derived proteins or peptides. There is the need for an agnostic approach that allows the evaluation of all sporozoite-associated antigens. METHODS: ELISpot plates coated with a defined amount of lysed Plasmodium falciparum sporozoites were used to assess the frequency of sporozoite-specific B cells in peripheral blood mononuclear cells from donors immunized with either a recombinant malaria vaccine or irradiated sporozoites. RESULTS: This report describes the assay conditions for a specific and sensitive sporozoite-based B cell ELISpot assay. The assay development considers the quality of sporozoite preparation as well as the detection threshold of the frequency of antigen-specific B cells. The assay enables the detection of sporozoite-specific IgM and IgG-producing B cells. Moreover, the assay can detect sporozoite-reactive B cells from subjects that were either vaccinated with the radiation attenuated sporozoite vaccine or a recombinant pre-erythrocytic vaccine. CONCLUSION: The newly developed sporozoite-based B cell ELISpot enables the monitoring of changes in the frequency of sporozoite-specific B cells. Applying this assay to assess the potency of vaccination regimens or seasonal changes in B cell populations from subjects residing in malaria-endemic areas will provide an opportunity to gain insight into immune mechanisms involved in protection and/or disease.


Asunto(s)
Linfocitos B/inmunología , Ensayo de Immunospot Ligado a Enzimas , Vacunas contra la Malaria/inmunología , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Ensayos Clínicos como Asunto , Humanos , Leucocitos Mononucleares/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Sensibilidad y Especificidad , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
6.
Malar J ; 16(1): 484, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187199

RESUMEN

BACKGROUND: Whole parasite vaccines provide a unique opportunity for dissecting immune mechanisms and identify antigens that are targeted by immune responses which have the potential to mediate sterile protection against malaria infections. The radiation attenuated sporozoite (PfSPZ) vaccine has been considered the gold standard for malaria vaccines because of its unparalleled efficacy. The immunogenicity of this and other vaccines continues to be evaluated by using recombinant proteins or peptides of known sporozoite antigens. This approach, however, has significant limitations by relying solely on a limited number of known pathogen-associated immune epitopes. Using the full range of antigens expressed by the sporozoite will enable the comprehensive immune-profiling of humoral immune responses induced by whole parasite vaccines. To address this challenge, a novel ELISA based on sporozoites was developed. RESULTS: The SPZ-ELISA method described in this report can be performed with either freshly dissected sporozoites or with cryopreserved sporozoite lysates. The use of a fixative for reproducible coating is not required. The SPZ-ELISA was first validated using monoclonal antibodies specific for CSP and TRAP and then used for the characterization of immune sera from radiation attenuated sporozoite vaccinees. CONCLUSION: Applying this simple and highly reproducible approach to assess immune responses induced by malaria vaccines, both recombinant and whole parasite vaccines, (1) will help in the evaluation of immune responses induced by antigenically complex malaria vaccines such as the irradiated SPZ-vaccine, (2) will facilitate and accelerate the identification of immune correlates of protection, and (3) can also be a valuable assessment tool for antigen discovery as well as down-selection of vaccine formulations and, thereby, guide vaccine design.


Asunto(s)
Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunidad Humoral , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Esporozoítos/inmunología , Humanos
7.
Malar J ; 13: 215, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24893777

RESUMEN

BACKGROUND: When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. METHODS: Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. RESULTS: Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. CONCLUSIONS: Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.


Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Malaria/transmisión , Plasmodium knowlesi/crecimiento & desarrollo , Animales , Femenino , Macaca mulatta , Vacunas contra la Malaria/administración & dosificación , Masculino , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...