Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324702

RESUMEN

Proteins containing DM9 motifs, which were originally identified in the Drosophila melanogaster genome, are widely distributed in various organisms and are assumed to be involved in their innate immune response. In this study, we produced a recombinant protein of CG13321 (rCG13321) from D. melanogaster, which consists of four DM9 motifs, in Escherichia coli cells. In affinity chromatography using a mannose-immobilized column, rCG13321 exhibited mannose-binding ability and was separated into high-affinity and low-affinity fractions, named HA and LA, respectively, based on its binding ability to the column. In addition to having a higher affinity for the column, HA exhibited self-oligomerization ability, suggesting slight differences in tertiary structure. Both LA and HA showed hemagglutinating activity and were able to agglutinate an oligomannose-containing dendrimer, indicating that they have multiple carbohydrate-binding sites. Glycan array analysis suggested that rCG13321 primarily recognizes D-mannose and D-rhamnose through hydrogen bonding with the 2-, 3-, and 4-hydroxy groups. Isothermal titration calorimetry demonstrated that rCG13321 has a comparable affinity to typical lectins. These findings suggest that CG13321 functions as a carbohydrate-binding protein or lectin that recognizes mannose and related carbohydrate-containing molecules on the surface of foreign organisms as a pattern recognition molecule.

2.
Redox Biol ; 52: 102286, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35334247

RESUMEN

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the primary cell type in liver fibrosis, a significant global health care burden. Cytoglobin (CYGB), a globin family member expressed in HSCs, inhibits HSC activation and reduces collagen production. We studied the antifibrotic properties of globin family members hemoglobin (HB), myoglobin (MB), and neuroglobin (NGB) in comparison with CYGB. APPROACH & RESULTS: We characterized the biological activities of globins in cultured human HSCs (HHSteCs) and their effects on carbon tetrachloride (CCl4)-induced cirrhosis in mice. All globins demonstrated greater antioxidant capacity than glutathione in cell-free systems. Cellular fractionation revealed endocytosis of extracellular MB, NGB, and CYGB, but not HB; endocytosed globins localized to intracellular membranous, cytoplasmic, and cytoskeletal fractions. MB, NGB, and CYGB, but not HB, scavenged reactive oxygen species generated spontaneously or stimulated by H2O2 or transforming growth factor ß1 in HHSteCs and reduced collagen 1A1 production via suppressing COL1A1 promoter activity. Disulfide bond-mutant NGB displayed decreased heme and superoxide scavenging activity and reduced collagen inhibitory capacity. RNA sequencing of MB- and NGB-treated HHSteCs revealed downregulation of extracellular matrix-encoding and fibrosis-related genes and HSC deactivation markers. Upregulation of matrix metalloproteinase (MMP)-1 was observed following MB and NGB treatment, and MMP-1 knockdown partially reversed globin-mediated effects on secreted collagen. Importantly, administration of MB, NGB, and CYGB suppressed CCl4-induced mouse liver fibrosis. CONCLUSIONS: These findings revealed unexpected roles for MB and NGB in deactivating HSCs and inhibiting liver fibrosis development, suggesting that globin therapy may represent a new strategy for combating fibrotic liver disease.


Asunto(s)
Globinas , Metaloproteinasa 1 de la Matriz , Animales , Citoglobina , Globinas/genética , Globinas/metabolismo , Hemoglobinas , Peróxido de Hidrógeno , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Especies Reactivas de Oxígeno
3.
Commun Biol ; 4(1): 467, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850260

RESUMEN

Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.


Asunto(s)
Proteínas Bacterianas/química , Hemo/metabolismo , Hemólisis , Streptococcus agalactiae/fisiología
4.
Angew Chem Int Ed Engl ; 60(26): 14578-14585, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826799

RESUMEN

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.


Asunto(s)
Rayos Láser , Peroxidasas/química , Cristalografía por Rayos X , Modelos Moleculares , Peroxidasas/metabolismo
5.
Angew Chem Weinheim Bergstr Ger ; 133(26): 14699-14706, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38505375

RESUMEN

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.

7.
Commun Biol ; 1: 120, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30272000

RESUMEN

Dietary iron absorption is regulated by duodenal cytochrome b (Dcytb), an integral membrane protein that catalyzes reduction of nonheme Fe3+ by electron transfer from ascorbate across the membrane. This step is essential to enable iron uptake by the divalent metal transporter. Here we report the crystallographic structures of human Dcytb and its complex with ascorbate and Zn2+. Each monomer of the homodimeric protein possesses cytoplasmic and apical heme groups, as well as cytoplasmic and apical ascorbate-binding sites located adjacent to each heme. Zn2+ coordinates to two hydroxyl groups of the apical ascorbate and to a histidine residue. Biochemical analysis indicates that Fe3+ competes with Zn2+ for this binding site. These results provide a structural basis for the mechanism by which Fe3+ uptake is promoted by reducing agents and should facilitate structure-based development of improved agents for absorption of orally administered iron.

8.
Sci Signal ; 11(525)2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636388

RESUMEN

The symbiotic nitrogen-fixing bacterium Bradyrhizobium japonicum is critical to the agro-industrial production of soybean because it enables the production of high yields of soybeans with little use of nitrogenous fertilizers. The FixL and FixJ two-component system (TCS) of this bacterium ensures that nitrogen fixation is only stimulated under conditions of low oxygen. When it is not bound to oxygen, the histidine kinase FixL undergoes autophosphorylation and transfers phosphate from adenosine triphosphate (ATP) to the response regulator FixJ, which, in turn, stimulates the expression of genes required for nitrogen fixation. We purified full-length B. japonicum FixL and FixJ proteins and defined their structures individually and in complex using small-angle x-ray scattering, crystallographic, and in silico modeling techniques. Comparison of active and inactive forms of FixL suggests that intramolecular signal transduction is driven by local changes in the sensor domain and in the coiled-coil region connecting the sensor and histidine kinase domains. We also found that FixJ exhibits conformational plasticity not only in the monomeric state but also in tetrameric complexes with FixL during phosphotransfer. This structural characterization of a complete TCS contributes both a mechanistic and evolutionary understanding to TCS signal relay, specifically in the context of the control of nitrogen fixation in root nodules.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Histidina Quinasa/metabolismo , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Hemoproteínas/química , Hemoproteínas/genética , Histidina Quinasa/química , Histidina Quinasa/genética , Modelos Moleculares , Fijación del Nitrógeno/genética , Fosforilación , Unión Proteica , Dominios Proteicos , Transducción de Señal/genética
9.
Biochim Biophys Acta Bioenerg ; 1859(5): 333-341, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29499184

RESUMEN

Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N2O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO2-) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies.


Asunto(s)
Proteínas Bacterianas , Óxido Nítrico/metabolismo , Oxidorreductasas , Pseudomonas aeruginosa , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Óxido Nítrico/genética , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
10.
J Inorg Biochem ; 179: 1-9, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149638

RESUMEN

Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb.


Asunto(s)
Globinas/química , Dominios Proteicos , Monóxido de Carbono/química , Citoglobina , Globinas/genética , Humanos , Hierro/química , Cinética , Ligandos , Mutación , Oxidación-Reducción , Dominios Proteicos/genética , Estabilidad Proteica , Superóxidos/química
11.
Nat Commun ; 8(1): 1585, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29147002

RESUMEN

Time-resolved serial femtosecond crystallography using an X-ray free electron laser (XFEL) in conjunction with a photosensitive caged-compound offers a crystallographic method to track enzymatic reactions. Here we demonstrate the application of this method using fungal NO reductase, a heme-containing enzyme, at room temperature. Twenty milliseconds after caged-NO photolysis, we identify a NO-bound form of the enzyme, which is an initial intermediate with a slightly bent Fe-N-O coordination geometry at a resolution of 2.1 Å. The NO geometry is compatible with those analyzed by XFEL-based cryo-crystallography and QM/MM calculations, indicating that we obtain an intact Fe3+-NO coordination structure that is free of X-ray radiation damage. The slightly bent NO geometry is appropriate to prevent immediate NO dissociation and thus accept H- from NADH. The combination of using XFEL and a caged-compound is a powerful tool for determining functional enzyme structures during catalytic reactions at the atomic level.

12.
Proc Natl Acad Sci U S A ; 114(37): 9888-9893, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847930

RESUMEN

Nitric oxide (NO) plays diverse and significant roles in biological processes despite its cytotoxicity, raising the question of how biological systems control the action of NO to minimize its cytotoxicity in cells. As a great example of such a system, we found a possibility that NO-generating nitrite reductase (NiR) forms a complex with NO-decomposing membrane-integrated NO reductase (NOR) to efficiently capture NO immediately after its production by NiR in anaerobic nitrate respiration called denitrification. The 3.2-Å resolution structure of the complex of one NiR functional homodimer and two NOR molecules provides an idea of how these enzymes interact in cells, while the structure may not reflect the one in cells due to the membrane topology. Subsequent all-atom molecular dynamics (MD) simulations of the enzyme complex model in a membrane and structure-guided mutagenesis suggested that a few interenzyme salt bridges and coulombic interactions of NiR with the membrane could stabilize the complex of one NiR homodimer and one NOR molecule and contribute to rapid NO decomposition in cells. The MD trajectories of the NO diffusion in the NiR:NOR complex with the membrane showed that, as a plausible NO transfer mechanism, NO released from NiR rapidly migrates into the membrane, then binds to NOR. These results help us understand the mechanism of the cellular control of the action of cytotoxic NO.


Asunto(s)
Anaerobiosis/fisiología , Desnitrificación/fisiología , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Biopelículas/crecimiento & desarrollo , Fibrosis Quística/microbiología , Humanos , Simulación de Dinámica Molecular , Nitrito Reductasas/química , Oxidorreductasas/química , Estructura Secundaria de Proteína
13.
J Inorg Biochem ; 135: 20-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24632414

RESUMEN

Cytoglobin (Cgb) was discovered a decade ago and is a fourth member of the group of hexacoordinated globin-folded proteins. Although some crystal structures have been reported and several functions have been proposed for Cgb, its physiological role remains uncertain. In this study, we measured cyanide binding to the ferric state of the wild-type (WT) Cgb, and found that the binding consisted of multiple steps. These results indicated that Cgb may be comprised of several forms, and the presence of monomers, dimers, and tetramers was subsequently confirmed by SDS-PAGE. Remarkably, each species contained two distinguishable forms, and, in the monomer, analyses of alternative cysteine states suggested the presence of an intramolecular disulfide bond (monomer SS form) and a structure with unpaired thiol groups (monomer SH form). These confirmed that forms were separated by gel-exclusion chromatography, and that the cyanide binding of the separated fractions was again measured; they showed different affinities for cyanide, with the monomer fraction showing the highest affinity. In addition, the ferrous state in each fraction showed distinct carbon monoxide (CO)-binding properties, and the affinities for cyanide and CO suggested a linear correlation. Furthermore, we also prepared several variants involving the two cysteine residues. The C38S and C83S variants showed a binding affinity for cyanide similar to the value for the monomer SH form, and hence the fraction with the highest affinity for exogenous ligands was designated as a monomer SS form. We concluded that polymerization could be a mechanism that triggers the exertion of various physiological functions of this protein and that an appropriate disulfide bond between the two cysteine residues was critical for regulating the binding affinity of Cgb, which can act as a ROS scavenger, for exogenous ligands.


Asunto(s)
Cistina/química , Globinas/química , Sustitución de Aminoácidos , Monóxido de Carbono/química , Citoglobina , Globinas/genética , Hemo/química , Humanos , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Cianuro de Potasio/química , Unión Proteica , Multimerización de Proteína , Espectrometría Raman
14.
J Biol Chem ; 287(36): 30755-68, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798069

RESUMEN

Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear. Here, we report that the transcriptional regulator heme-regulated transporter regulator (HrtR) senses and binds a heme molecule as its physiological effector to regulate the expression of the heme-efflux system responsible for heme homeostasis in L. lactis. To elucidate the molecular mechanisms of how HrtR senses a heme molecule and regulates gene expression for the heme efflux system, we determined the crystal structures of the apo-HrtR·DNA complex, apo-HrtR, and holo-HrtR at a resolution of 2.0, 3.1, and 1.9 Å, respectively. These structures revealed that HrtR is a member of the TetR family of transcriptional regulators. The residue pair Arg-46 and Tyr-50 plays a crucial role for specific DNA binding through hydrogen bonding and a CH-π interaction with the DNA bases. HrtR adopts a unique mechanism for its functional regulation upon heme sensing. Heme binding to HrtR causes a coil-to-helix transition of the α4 helix in the heme-sensing domain, which triggers a structural change of HrtR, causing it to dissociate from the target DNA for derepression of the genes encoding the heme efflux system. HrtR uses a unique heme-sensing motif with bis-His (His-72 and His-149) ligation to the heme, which is essential for the coil-to-helix transition of the α4 helix upon heme sensing.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Homeostasis/fisiología , Lactococcus lactis/química , Factores de Transcripción/química , Transcripción Genética/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Transporte de Electrón/fisiología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Chem Commun (Camb) ; 48(52): 6523-5, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22622145

RESUMEN

The crystal structure of a truncated Aer2, a signal transducer protein from Pseudomonas aeruginosa, consisting of the heme-containing PAS and di-HAMP domains revealed that a distal tryptophan residue (Trp283) plays an important role in stabilizing the heme-bound O(2) and intra-molecular signal transduction upon O(2) binding.


Asunto(s)
Proteínas Bacterianas/química , Hemoproteínas/química , Oxígeno/metabolismo , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Hemoproteínas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/metabolismo , Transducción de Señal
16.
J Biol Chem ; 287(24): 19973-84, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22528495

RESUMEN

HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ∼50 µs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ∼50 µs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 µs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Hemoproteínas/química , Sustitución de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Mutación Missense , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta
17.
J Phys Chem B ; 115(44): 13012-8, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21942263

RESUMEN

Fourier transform infrared (FTIR) spectra, "light" minus "dark" difference FTIR spectra, and time-resolved step-scan (TRS(2)) FTIR spectra are reported for carbonmonoxy aldoxime dehydratase. Two C-O modes of heme at 1945 and 1964 cm(-1) have been identified and remained unchanged in H(2)O/D(2)O exchange and in the pH 5.6-8.5 range, suggesting the presence of two conformations at the active site. The observed C-O frequencies are 5 and 16 cm(-1) lower and higher, respectively, than that obtained previously (Oinuma, K.-I.; et al. FEBS Lett.2004, 568, 44-48). We suggest that the strength of the Fe-His bond and the neutralization of the negatively charged propionate groups modulate the ν(Fe-CO)/ν(CO) back-bonding correlation. The "light" minus "dark" difference FTIR spectra indicate that the heme propionates are in both the protonated and deprotonated forms, and the photolyzed CO becomes trapped within a ligand docking site (ν(CO) = 2138 cm(-1)). The TRS(2)-FTIR spectra show that the rate of recombination of CO to the heme is k(1945 cm(-1)) = 126 ± 20 s(-1) and k(1964 cm(-1)) = 122 ± 20 s(-1) at pH 5.6, and k(1945 cm(-1)) = 148 ± 30 s(-1) and k(1964 cm(-1)) = 158 ± 32 s(-1) at pH 8.5. The rate of decay of the heme propionate vibrations is on a time scale coincident with the rate of rebinding, suggesting that there is a coupling between ligation dynamics in the distal heme environment and the environment sensed by the heme propionates. The implications of these results with respect to the proximal His-Fe heme environment including the propionates and the positively charged or proton-donating residues in the distal pocket which are crucial for the synthesis of nitriles are discussed.


Asunto(s)
Carbono/química , Hemo/química , Hidroliasas/química , Nitrógeno/química , Rhodococcus/enzimología , Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Dominio Catalítico , Hemo/metabolismo , Hidroliasas/metabolismo , Ligandos , Modelos Moleculares , Nitrógeno/metabolismo , Propionatos/química , Propionatos/metabolismo , Protones , Rhodococcus/química , Espectroscopía Infrarroja por Transformada de Fourier
18.
Proteins ; 79(4): 1143-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21254233

RESUMEN

Cytoglobin (Cgb) is a vertebrate heme-containing globin-protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa-coordinated (bis-hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 A resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD-corner and D-helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa-coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta-coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand-binding properties of Cgb.


Asunto(s)
Monóxido de Carbono/química , Globinas/química , Animales , Cristalización , Citoglobina , Ditionita/química , Proteínas de Drosophila/química , Hemo/química , Hemoglobinas/química , Humanos , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Neuroglobina , Unión Proteica , Conformación Proteica , Difracción de Rayos X
19.
Biochim Biophys Acta ; 1804(1): 166-72, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19818878

RESUMEN

We have studied the structural and enzymatic properties of a diguanylate cyclase from an obligatory anaerobic bacterium Desulfotalea psychrophila, which consists of the N-terminal sensor domain and the C-terminal diguanylate cyclase domain. The sensor domain shows an amino acid sequence homology and spectroscopic properties similar to those of the sensor domains of the globin-coupled sensor proteins containing a protoheme. This heme-containing diguanylate cyclase catalyzes the formation of cyclic di-GMP from GTP only when the heme in the sensor domain binds molecular oxygen. When the heme is in the ferric, deoxy, CO-bound, or NO-bound forms, no enzymatic activity is observed. Resonance Raman spectroscopy reveals that Tyr55 forms a hydrogen bond with the heme-bound O(2), but not with CO. Instead, Gln81 interacts with the heme-bound CO. These differences of a hydrogen bonding network will play a crucial role for the selective O(2) sensing responsible for the regulation of the enzymatic activity.


Asunto(s)
GMP Cíclico/análogos & derivados , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , GMP Cíclico/biosíntesis , Deltaproteobacteria/enzimología , Proteínas de Escherichia coli , Enlace de Hidrógeno , Liasas de Fósforo-Oxígeno/efectos de los fármacos , Liasas de Fósforo-Oxígeno/genética , Espectrometría Raman , Tirosina/metabolismo
20.
J Biol Chem ; 284(46): 32089-96, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19740758

RESUMEN

Aldoxime dehydratase (Oxd) catalyzes the dehydration of aldoximes (R-CH=N-OH) to their corresponding nitrile (R-C triple bond N). Oxd is a heme-containing enzyme that catalyzes the dehydration reaction as its physiological function. We have determined the first two structures of Oxd: the substrate-free OxdRE at 1.8 A resolution and the n-butyraldoxime- and propionaldoxime-bound OxdREs at 1.8 and 1.6 A resolutions, respectively. Unlike other heme enzymes, the organic substrate is directly bound to the heme iron in OxdRE. We determined the structure of the Michaelis complex of OxdRE by using the unique substrate binding and activity regulation properties of Oxd. The Michaelis complex was prepared by x-ray cryoradiolytic reduction of the ferric dead-end complex in which Oxd contains a Fe(3+) heme form. The crystal structures reveal the mechanism of substrate recognition and the catalysis of OxdRE.


Asunto(s)
Hemo/química , Hidroliasas/química , Rhodococcus/enzimología , Cristalografía por Rayos X , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...