Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Nat Commun ; 14(1): 8031, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052804

RESUMEN

Cancer cells inevitably interact with neighboring host tissue-resident cells during the process of metastatic colonization, establishing a metastatic niche to fuel their survival, growth, and invasion. However, the underlying mechanisms in the metastatic niche are yet to be fully elucidated owing to the lack of methodologies for comprehensively studying the mechanisms of cell-cell interactions in the niche. Here, we improve a split green fluorescent protein (GFP)-based genetically encoded system to develop secretory glycosylphosphatidylinositol-anchored reconstitution-activated proteins to highlight intercellular connections (sGRAPHIC) for efficient fluorescent labeling of tissue-resident cells that neighbor on and putatively interact with cancer cells in deep tissues. The sGRAPHIC system enables the isolation of metastatic niche-associated tissue-resident cells for their characterization using a single-cell RNA sequencing platform. We use this sGRAPHIC-leveraged transcriptomic platform to uncover gene expression patterns in metastatic niche-associated hepatocytes in a murine model of liver metastasis. Among the marker genes of metastatic niche-associated hepatocytes, we identify Lgals3, encoding galectin-3, as a potential pro-metastatic factor that accelerates metastatic growth and invasion.


Asunto(s)
Neoplasias Hepáticas , Humanos , Ratones , Animales , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Matriz Extracelular/metabolismo , Comunicación Celular
3.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894894

RESUMEN

Several genetic defects, including a mutation in myosin heavy chain 11 (Myh11), are reported to cause familial thoracic aortic aneurysm and dissection (FTAAD). We recently showed that mice lacking K1256 of Myh11 developed aortic dissection when stimulated with angiotensin II, despite the absence of major pathological phenotypic abnormalities prior to stimulation. In this study, we used a comprehensive, data-driven, unbiased, multi-omics approach to find underlying changes in transcription and metabolism that predispose the aorta to dissection in mice harboring the Myh11 K1256del mutation. Pathway analysis of transcriptomes showed that genes involved in membrane transport were downregulated in homozygous mutant (Myh11ΔK/ΔK) aortas. Furthermore, expanding the analysis with metabolomics showed that two mechanisms that raise the cytosolic Ca2+ concentration-multiple calcium channel expression and ADP-ribose synthesis-were attenuated in Myh11ΔK/ΔK aortas. We suggest that the impairment of the Ca2+ influx attenuates aortic contraction and that suboptimal contraction predisposes the aorta to dissection.


Asunto(s)
Aneurisma de la Aorta Torácica , Calcio , Ratones , Animales , Calcio/metabolismo , Multiómica , Aorta/metabolismo , Aneurisma de la Aorta Torácica/metabolismo , Aorta Torácica/patología
4.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092554

RESUMEN

Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.


Asunto(s)
Obesidad , Osteopontina , Ratones , Animales , Osteopontina/genética , Obesidad/genética , Tejido Adiposo , Macrófagos , Fagocitosis
5.
Aging Cell ; 20(8): e13421, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34278707

RESUMEN

In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high-fat diet (HFD, 1-10 weeks) in 5-month-old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence-associated ß-galactosidase activity and cyclin-dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD-derived preadipocytes, as compared with chow diet-derived preadipocytes. One-month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD-induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.


Asunto(s)
Adenosina Trifosfato/metabolismo , Tejido Adiposo/fisiopatología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Animales , Masculino , Ratones
6.
Circulation ; 144(7): 559-574, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34162223

RESUMEN

BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.


Asunto(s)
Envejecimiento/metabolismo , Miocardio/metabolismo , Fenilalanina/metabolismo , Envejecimiento/patología , Aminoácidos/metabolismo , Animales , Biomarcadores , Biopterinas/análogos & derivados , Biopterinas/farmacología , Catálisis , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fenilalanina/sangre , Ratas
8.
Cardiovasc Res ; 115(12): 1778-1790, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605506

RESUMEN

AIMS: Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of ß-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS: Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/ß a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/ß phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION: Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/ß phosphorylation.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Insuficiencia Cardíaca/enzimología , Hemodinámica , Contracción Miocárdica , Miocardio/enzimología , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Adenilil Ciclasas/genética , Factores de Edad , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sistemas de Mensajero Secundario , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
9.
JCI Insight ; 3(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429365

RESUMEN

Obesity is characterized by accumulation of adipose tissue and is one the most important risk factors in the development of insulin resistance. Carbon monoxide-releasing (CO-releasing) molecules (CO-RMs) have been reported to improve the metabolic profile of obese mice, but the underlying mechanism remains poorly defined. Here, we show that oral administration of CORM-401 to obese mice fed a high-fat diet (HFD) resulted in a significant reduction in body weight gain, accompanied by a marked improvement in glucose homeostasis. We further unmasked an action we believe to be novel, by which CO accumulates in visceral adipose tissue and uncouples mitochondrial respiration in adipocytes, ultimately leading to a concomitant switch toward glycolysis. This was accompanied by enhanced systemic and adipose tissue insulin sensitivity, as indicated by a lower blood glucose and increased Akt phosphorylation. Our findings indicate that the transient uncoupling activity of CO elicited by repetitive administration of CORM-401 is associated with lower weight gain and increased insulin sensitivity during HFD. Thus, prototypic compounds that release CO could be investigated for developing promising insulin-sensitizing agents.


Asunto(s)
Adipocitos/efectos de los fármacos , Monóxido de Carbono/metabolismo , Resistencia a la Insulina , Glicinas N-Sustituídas/farmacología , Obesidad/metabolismo , Aumento de Peso/efectos de los fármacos , Células 3T3-L1 , Adenosina Trifosfato/metabolismo , Adipocitos/metabolismo , Animales , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Glicinas N-Sustituídas/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacología
10.
Circulation ; 138(8): 809-822, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29500246

RESUMEN

BACKGROUND: Aging induces cardiac structural and functional changes linked to the increased deposition of extracellular matrix proteins, including OPN (osteopontin), conducing to progressive interstitial fibrosis. Although OPN is involved in various pathological conditions, its role in myocardial aging remains unknown. METHODS: OPN deficient mice (OPN-/-) with their wild-type (WT) littermates were evaluated at 2 and 14 months of age in terms of cardiac structure, function, histology and key molecular markers. OPN expression was determined by reverse-transcription polymerase chain reaction, immunoblot and immunofluorescence. Luminex assays were performed to screen plasma samples for various cytokines/adipokines in addition to OPN. Similar explorations were conducted in aged WT mice after surgical removal of visceral adipose tissue (VAT) or treatment with a small-molecule OPN inhibitor agelastatin A. Primary WT fibroblasts were incubated with plasma from aged WT and OPN-/- mice, and evaluated for senescence (senescence-associated ß-galactosidase and p16), as well as fibroblast activation markers (Acta2 and Fn1). RESULTS: Plasma OPN levels increased in WT mice during aging, with VAT showing the strongest OPN induction contrasting with myocardium that did not express OPN. VAT removal in aged WT mice restored cardiac function and decreased myocardial fibrosis in addition to a substantial reduction of circulating OPN and transforming growth factor ß levels. OPN deficiency provided a comparable protection against age-related cardiac fibrosis and dysfunction. Intriguingly, a strong induction of senescence in cardiac fibroblasts was observed in both VAT removal and OPN-/- mice. The addition of plasma from aged OPN-/- mice to cultures of primary cardiac fibroblasts induced senescence and reduced their activation (compared to aged WT plasma). Finally, Agelastatin A treatment of aged WT mice fully reversed age-related myocardial fibrosis and dysfunction. CONCLUSIONS: During aging, VAT represents the main source of OPN and alters heart structure and function via its profibrotic secretome. As a proof-of-concept, interventions targeting OPN, such as VAT removal and OPN deficiency, rescued the heart and induced a selective modulation of fibroblast senescence. Our work uncovers OPN's role in the context of myocardial aging and proposes OPN as a potential new therapeutic target for a healthy cardiac aging.


Asunto(s)
Proliferación Celular , Senescencia Celular , Fibroblastos/metabolismo , Grasa Intraabdominal/metabolismo , Miocardio/metabolismo , Osteopontina/metabolismo , Comunicación Paracrina , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/prevención & control , Factores de Edad , Envejecimiento , Animales , Células Cultivadas , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Osteopontina/deficiencia , Osteopontina/genética , Prueba de Estudio Conceptual , Transducción de Señal , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
11.
Geriatr Gerontol Int ; 18(1): 65-71, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28776906

RESUMEN

AIM: To clarify whether carotid atherosclerosis and its risk factors are associated with cognitive decline. METHODS: We evaluated 206 individuals who visited our center for health screening. We carried out physical examinations, blood tests, intima-media thickness (IMT) measurement by carotid ultrasonography, brain magnetic resonance imaging scanning and cognitive function assessments. A total of 30 individuals, who had significant cerebrovascular lesions detected in magnetic resonance imaging scans, were excluded. To detect early cognitive decline, we defined "cognitive impairment (CI)" when a patient satisfied at least one of three criteria. These were Mini-Mental State Examination score <24, clock-drawing test score <4 coexisting with forgetfulness and Wechsler Memory Scale-revised delayed recall score below the normal range for the duration of education (>16 years of education: ≥9, 10-15 years: ≥5, 0-9 years: ≥3). RESULTS: Among 176 individuals, 27 were placed in the CI group. IMT was significantly higher in the CI group as compared with the non-CI group (mean ± SD: 2.0 ± 1.0 vs 1.7 ± 0.7, P = 0018 by Student's t-test). Other atherosclerotic risk factors, such as blood pressure, low-density lipoprotein cholesterol, and hemoglobin A1c, were not significantly different between the two groups. In multivariate analysis, maximum IMT was associated with impaired immediate recall score on Wechsler Memory Scale-revised, independent of the presence of deep white matter hyperintensities on the magnetic resonance imaging scan. CONCLUSIONS: Subclinical carotid atherosclerosis, defined as thickened IMT, could be a marker for early stages of CI, especially for immediate memory recall. The impairment is presumably caused by inducing cerebral microvascular dysfunction in the frontal lobe. Geriatr Gerontol Int 2018; 18: 65-71.


Asunto(s)
Enfermedades de las Arterias Carótidas/psicología , Grosor Intima-Media Carotídeo , Enfermedades de las Arterias Carótidas/diagnóstico , Trastornos del Conocimiento/epidemiología , Humanos , Trastornos de la Memoria/epidemiología , Memoria a Corto Plazo , Factores de Riesgo
12.
13.
J Am Coll Cardiol ; 70(14): 1704-1716, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28958326

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) may alter cardiac structure and function, but obesity, hypertension (HTN), or aging can induce similar abnormalities. OBJECTIVES: This study sought to link cardiac phenotypes in T2DM patients with clinical profiles and outcomes using cluster analysis. METHODS: Baseline echocardiography and a composite endpoint (cardiovascular mortality and hospitalization) were evaluated in 842 T2DM patients from 2 prospective cohorts. A cluster analysis was performed on echocardiographic variables, and the association between clusters and clinical profiles and outcomes was assessed. RESULTS: Three clusters were identified. Cluster 1 patients had the lowest left ventricular (LV) mass index and ratio between early mitral inflow velocity and mitral annular early diastolic velocity (E/e') ratio, had the highest left ventricular ejection fraction (LVEF), and were predominantly male with the lowest rate of obesity or HTN. Cluster 2 patients had the highest strain and highest E/e' ratio, were the oldest, were predominantly female, and had the lowest rate of isolated T2DM (without HTN or obesity). Cluster 3 patients had the highest LV mass index and volumes and the lowest LVEF and strain, were predominantly male, and shared similar age and rate of obesity and HTN as cluster 1 patients. After follow-up of 67 months (interquartile range: 40 to 87), the composite endpoint occurred in 56 of 521 patients (10.8%). Clusters 2 (hazard ratio: 2.37; 95% confidence interval: 1.15 to 4.88) and 3 (hazard ratio: 2.19; 95% confidence interval: 1.00 to 4.82) had a similar outcome, which was worse than cluster 1. CONCLUSIONS: Cluster analysis of echocardiographic variables identified 3 different echocardiographic phenotypes of T2DM patients that were associated with distinct clinical profiles and highlighted the prognostic value of LV remodeling and subclinical dysfunction.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Diabetes Mellitus Tipo 2 , Ecocardiografía/métodos , Disfunción Ventricular Izquierda , Remodelación Ventricular , Anciano , Enfermedades Asintomáticas , Análisis por Conglomerados , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Francia/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Medición de Riesgo , Factores de Riesgo , Estadística como Asunto , Volumen Sistólico , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
14.
Eur Heart J Cardiovasc Imaging ; 18(11): 1283-1291, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062567

RESUMEN

AIM: Long-term high-fat diet (HFD) induces both cardiac remodelling and myocardial dysfunction in murine models. The aim was to assess the time course and mechanisms of metabolic and cardiac modifications induced by short-term HFD in wild-type (WT) mice. METHODS AND RESULTS: Thirty-three WT mice were subjected to HFD (60% fat, n = 16) and chow diet (CD, 13% fat, n = 17). Metabolic and echocardiographic data were collected at baseline and every 5 weeks for 20 weeks. Invasive haemodynamic data and myocardial samples were collected at 5 and 20 weeks. Echocardiographic data included left ventricular (LV) diameters and thickness, and systolic function using radial strain rate (SR). Histological assessment of cardiomyocyte and adipocyte sizes, interstitial fibrosis, and apoptosis index were performed. During follow-up, body weight, and glycaemia levels were higher in HFD than in CD mice, in association with an early adipose tissue remodelling. Despite no difference between both groups in blood pressure and LV mass at 5 weeks, an early LV dysfunction was observed in HFD mice as assessed by radial SR (21 ± 0.8 vs. 27 ± 0.8 unit/s, P < 0.001) and haemodynamic assessment. During follow-up, both groups demonstrated a progressive systolic and diastolic LV dysfunction and remodelling including dilatation and hypertrophy, which were more severe in HFD mice. Compared with CD mice, the early LV impairment in HFD mice was coupled with a higher cardiomyocyte apoptosis level (0.95 vs. 0.02%, P < 0.05) associated with an interstitial fibrosis process (2.3 vs. 0.2%, P < 0.05), which worsen during follow-up. CONCLUSION: The HFD promoted early metabolic and cardiac dysfunctions, and adipose and myocardial tissues remodelling.


Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Dieta Alta en Grasa , Ecocardiografía , Animales , Apoptosis , Biomarcadores/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Etiquetado Corte-Fin in Situ , Insulina/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Remodelación Ventricular
15.
Proc Natl Acad Sci U S A ; 114(5): E771-E780, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096344

RESUMEN

The abundance of epicardial adipose tissue (EAT) is associated with atrial fibrillation (AF), the most frequent cardiac arrhythmia. However, both the origin and the factors involved in EAT expansion are unknown. Here, we found that adult human atrial epicardial cells were highly adipogenic through an epithelial-mesenchymal transition both in vitro and in vivo. In a genetic lineage tracing the WT1CreERT2+/-RosatdT+/- mouse model subjected to a high-fat diet, adipocytes of atrial EAT derived from a subset of epicardial progenitors. Atrial myocardium secretome induces the adipogenic differentiation of adult mesenchymal epicardium-derived cells by modulating the balance between mesenchymal Wingless-type Mouse Mammary Tumor Virus integration site family, member 10B (Wnt10b)/ß-catenin and adipogenic ERK/MAPK signaling pathways. The adipogenic property of the atrial secretome was enhanced in AF patients. The atrial natriuretic peptide secreted by atrial myocytes is a major adipogenic factor operating at a low concentration by binding to its natriuretic peptide receptor A (NPRA) receptor and, in turn, by activating a cGMP-dependent pathway. Hence, our data indicate cross-talk between EAT expansion and mechanical function of the atrial myocardium.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Factor Natriurético Atrial/metabolismo , Atrios Cardíacos/metabolismo , Pericardio/metabolismo , Adipocitos/citología , Anciano , Animales , Células Cultivadas , Dieta Alta en Grasa , Transición Epitelial-Mesenquimal , Femenino , Atrios Cardíacos/citología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Pericardio/citología , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
16.
Eur Respir J ; 48(2): 470-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27418552

RESUMEN

Pulmonary artery smooth muscle cell (PA-SMC) proliferation and inflammation are key components of pulmonary arterial hypertension (PAH). Interleukin (IL)-1ß binds to IL-1 receptor (R)1, thereby recruiting the molecular adaptor myeloid differentiation primary response protein 88 (MyD88) (involved in IL-1R1 and Toll-like receptor signal transduction) and inducing IL-1, IL-6 and tumour necrosis factor-α synthesis through nuclear factor-κB activation.We investigated the IL-1R1/MyD88 pathway in the pathogenesis of pulmonary hypertension.Marked IL-1R1 and MyD88 expression with predominant PA-SMC immunostaining was found in lungs from patients with idiopathic PAH, mice with hypoxia-induced pulmonary hypertension and SM22-5-HTT(+) mice. Elevations in lung IL-1ß, IL-1R1, MyD88 and IL-6 preceded pulmonary hypertension in hypoxic mice. IL-1R1(-/-), MyD88(-/-) and control mice given the IL-1R1 antagonist anakinra were protected similarly against hypoxic pulmonary hypertension and perivascular macrophage recruitment. Anakinra reversed pulmonary hypertension partially in SM22-5-HTT(+) mice and markedly in monocrotaline-treated rats. IL-1ß-mediated stimulation of mouse PA-SMC growth was abolished by anakinra and absent in IL-1R1(-/-) and MyD88(-/-) mice. Gene deletion confined to the myeloid lineage (M.lys-Cre MyD88(fl/fl) mice) decreased pulmonary hypertension severity versus controls, suggesting IL-1ß-mediated effects on PA-SMCs and macrophages. The growth-promoting effect of media conditioned by M1 or M2 macrophages from M.lys-Cre MyD88(fl/fl) mice was attenuated.Pulmonary vessel remodelling and inflammation during pulmonary hypertension require IL-1R1/MyD88 signalling. Targeting the IL-1ß/IL-1R1 pathway may hold promise for treating human PAH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Medios de Cultivo Condicionados/química , Eliminación de Gen , Humanos , Inflamación , Proteína Antagonista del Receptor de Interleucina 1/química , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocrotalina/química , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Ratas , Ratas Wistar
17.
Am J Respir Cell Mol Biol ; 55(3): 337-51, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26974350

RESUMEN

Excessive growth of pulmonary arterial (PA) smooth muscle cells (SMCs) is a major component of PA hypertension (PAH). The calcium-activated neutral cysteine proteases calpains 1 and 2, expressed by PASMCs, contribute to PH but are tightly controlled by a single specific inhibitor, calpastatin. Our objective was to investigate calpastatin during pulmonary hypertension (PH) progression and its potential role as an intracellular and/or extracellular effector. We assessed calpains and calpastatin in patients with idiopathic PAH and mice with hypoxic or spontaneous (SM22-5HTT(+) strain) PH. To assess intracellular and extracellular roles for calpastatin, we studied effects of the calpain inhibitor PD150606 on hypoxic PH in mice with calpastatin overexpression driven by the cytomegalovirus promoter (CMV-Cast) or C-reactive protein (CRP) promoter (CRP-Cast), inducing increased calpastatin production ubiquitously and in the liver, respectively. Chronically hypoxic and SM22-5HTT(+) mice exhibited increased lung calpastatin and calpain 1 and 2 protein levels and activity, both intracellularly and extracellularly. Prominent calpastatin and calpain immunostaining was found in PASMCs of remodeled vessels in mice and patients with PAH, who also exhibited increased plasma calpastatin levels. CMV-Cast and CRP-Cast mice showed similarly decreased PH severity compared with wild-type mice, with no additional effect of PD150606 treatment. In cultured PASMCs from wild-type and CMV-Cast mice, exogenous calpastatin decreased cell proliferation and migration with similar potency as PD150606 and suppressed fibronectin-induced potentiation. These results indicate that calpastatin limits PH severity via extracellular mechanisms. They suggest a new approach to the development of treatments for PH.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Progresión de la Enfermedad , Espacio Extracelular/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Acrilatos/farmacología , Acrilatos/uso terapéutico , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citomegalovirus/genética , Espacio Extracelular/efectos de los fármacos , Pruebas de Función Cardíaca , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/fisiopatología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Regiones Promotoras Genéticas/genética , Arteria Pulmonar/patología
18.
Am J Respir Cell Mol Biol ; 55(3): 352-67, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26991739

RESUMEN

Constitutive activation of the mammalian target of rapamycin (mTOR) complexes mTORC1 and mTORC2 is associated with pulmonary hypertension (PH) and sustained growth of pulmonary artery (PA) smooth muscle cells (SMCs). We investigated whether selective mTORC1 activation in SMCs induced by deleting the negative mTORC1 regulator tuberous sclerosis complex 1 gene (TSC1) was sufficient to produce PH in mice. Mice expressing Cre recombinase under SM22 promoter control were crossed with TSC1(LoxP/LoxP) mice to generate SM22-TSC1(-/-) mice. At 8 weeks of age, SM22-TSC1(-/-) mice exhibited PH with marked increases in distal PA muscularization and Ki67-positive PASMC counts, without systemic hypertension or cardiac dysfunction. Marked activation of the mTORC1 substrates S6 kinase and 4E-BP and the mTORC2 substrates p-Akt(Ser473) and glycogen synthase kinase 3 was found in the lungs and pulmonary vessels of SM22-TSC1(-/-) mice when compared with control mice. Treatment with 5 mg/kg rapamycin for 3 weeks to inhibit mTORC1 and mTORC2 fully reversed PH in SM22-TSC1(-/-) mice. In chronically hypoxic mice and SM22-5HTT(+) mice exhibiting PH associated with mTORC1 and mTORC2 activation, PH was maximally attenuated by low-dose rapamycin associated with selective mTORC1 inhibition. Cultured PASMCs from SM22-TSC1(-/-), SM22-5HTT(+), and chronically hypoxic mice exhibited similar sustained growth-rate enhancement and constitutive mTORC1 and mTORC2 activation; both effects were abolished by rapamycin. Deletion of the downstream mTORC1 effectors S6 kinase 1/2 in mice also activated mTOR signaling and induced PH. We concluded that activation of mTORC1 signaling leads to increased PASMC proliferation and subsequent PH development.


Asunto(s)
Eliminación de Gen , Hipertensión Pulmonar/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Crónica , Hiperplasia , Hipertensión Pulmonar/diagnóstico por imagen , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Pulmón/irrigación sanguínea , Pulmón/patología , Masculino , Metformina/farmacología , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa
20.
Am J Physiol Heart Circ Physiol ; 309(11): H1883-93, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26453333

RESUMEN

The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Activación de Linfocitos , Activación de Macrófagos , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Remodelación Ventricular , Cicatrización de Heridas , Animales , Linfocitos T CD4-Positivos/inmunología , Proteínas de Unión al Calcio/genética , Calpaína/metabolismo , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Activación Enzimática , Genotipo , Rotura Cardíaca Posinfarto/metabolismo , Rotura Cardíaca Posinfarto/patología , Rotura Cardíaca Posinfarto/fisiopatología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/inmunología , Miocardio/patología , Fenotipo , Factores de Tiempo , Regulación hacia Arriba , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...