Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 223: 8-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24767110

RESUMEN

Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions.


Asunto(s)
Adaptación Fisiológica/genética , Aluminio/toxicidad , Eucalyptus/genética , Eucalyptus/fisiología , Genes de Plantas , Proteínas de Plantas/metabolismo , Transcripción Genética/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Agrobacterium/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Citratos/metabolismo , Eucalyptus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
2.
Planta ; 237(4): 979-89, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23187679

RESUMEN

Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE1-4, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502-579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.


Asunto(s)
Aluminio/toxicidad , Ácido Cítrico/metabolismo , Eucalyptus/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Ciclosporina , Eucalyptus/efectos de los fármacos , Toxinas Marinas , Datos de Secuencia Molecular , Proteínas de Transporte de Catión Orgánico/genética , Oxazoles , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Inhibidores de Proteínas Quinasas
3.
J Virol ; 84(8): 4002-12, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20130065

RESUMEN

The rabies virus Ni-CE strain causes nonlethal infection in adult mice after intracerebral inoculation, whereas the parental Nishigahara (Ni) strain kills mice. We previously reported that the chimeric CE(NiN) strain with the N gene from the Ni strain in the genetic background of the Ni-CE strain kills adult mice, indicating that the N gene is related to the different pathogenicities of Ni and Ni-CE strains. In the present study, to obtain an insight into the mechanism by which the N gene determines viral pathogenicity, we compared the effects of Ni, Ni-CE, and CE(NiN) infections on host gene expressions using a human neuroblastoma cell line. Microarray analysis of these infected cells revealed that the expression levels of particular genes in Ni- and CE(NiN)-infected cells, including beta interferon (IFN-beta) and chemokine genes (i.e., CXCL10 and CCL5) were lower than those in Ni-CE-infected cells. We also demonstrated that Ni-CE infection activated the interferon regulatory factor 3 (IRF-3)-dependent IFN-beta promoter and induced IRF-3 nuclear translocation more efficiently than did Ni or CE(NiN) infection. Furthermore, we showed that Ni-CE infection, but not Ni or CE(NiN) infection, strongly activates the IRF-3 pathway through activation of RIG-I, which is known as a cellular sensor of virus infection. These findings indicate that the N protein of rabies virus (Ni strain) has a function to evade the activation of RIG-I. To our knowledge, this is the first report that the Mononegavirales N protein functions to evade induction of host IFN and chemokines.


Asunto(s)
ARN Helicasas DEAD-box/antagonistas & inhibidores , Nucleoproteínas/fisiología , Virus de la Rabia/patogenicidad , Proteínas Virales/fisiología , Factores de Virulencia/fisiología , Transporte Activo de Núcleo Celular , Línea Celular , Quimiocina CCL5/biosíntesis , Quimiocina CXCL10/biosíntesis , Proteína 58 DEAD Box , Perfilación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Neuronas/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Inmunológicos
4.
Plant Physiol ; 150(1): 281-94, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19321711

RESUMEN

The Arabidopsis (Arabidopsis thaliana) mutant stop1 (for sensitive to proton rhizotoxicity1) carries a missense mutation at an essential domain of the histidine-2-cysteine-2 zinc finger protein STOP1. Transcriptome analyses revealed that various genes were down-regulated in the mutant, indicating that STOP1 is involved in signal transduction pathways regulating aluminum (Al)- and H(+)-responsive gene expression. The Al hypersensitivity of the mutant could be caused by down-regulation of AtALMT1 (for Arabidopsis ALUMINUM-ACTIVATED MALATE TRANSPORTER1) and ALS3 (ALUMINUM-SENSITIVE3). This hypothesis was supported by comparison of Al tolerance among T-DNA insertion lines and a transgenic stop mutant carrying cauliflower mosaic virus 35SAtALMT1. All T-DNA insertion lines of STOP1, AtALMT1, and ALS3 were sensitive to Al, but introduction of cauliflower mosaic virus 35SAtALMT1 did not completely restore the Al tolerance of the stop1 mutant. Down-regulation of various genes involved in ion homeostasis and pH-regulating metabolism in the mutant was also identified by microarray analyses. CBL-INTERACTING PROTEIN KINASE23, regulating a major K(+) transporter, and a sulfate transporter, SULT3;5, were down-regulated in the mutant. In addition, integral profiling of the metabolites and transcripts revealed that pH-regulating metabolic pathways, such as the gamma-aminobutyric acid shunt and biochemical pH stat pathways, are down-regulated in the mutant. These changes could explain the H(+) hypersensitivity of the mutant and would make the mutant more susceptible in acid soil stress than other Al-hypersensitive T-DNA insertion lines. Finally, we showed that STOP1 is localized to the nucleus, suggesting that the protein regulates the expression of multiple genes that protect Arabidopsis from Al and H(+) toxicities, possibly as a transcription factor.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Protones , Factores de Transcripción/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Homeostasis/genética , Concentración de Iones de Hidrógeno , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Estrés Fisiológico , Factores de Transcripción/análisis , Factores de Transcripción/genética
5.
BMC Plant Biol ; 9: 32, 2009 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-19309492

RESUMEN

BACKGROUND: Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. RESULTS: Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al) ions, cadmium (Cd) ions, copper (Cu) ions and sodium (NaCl) chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter) in the Al-specific group and DREB (encoding dehydration responsive element binding protein) in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. CONCLUSION: In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization. Our analyses revealed that both general and specific genes were induced in Arabidopsis roots exposed to various rhizotoxic ions. Several defense systems, such as the production of reactive oxygen species and disturbance of Ca homeostasis, were triggered by all stressors, while specific defense genes were also induced by individual stressors. Similar studies in different plant species could help to clarify the resistance mechanisms at the molecular level to provide information that can be utilized for marker-assisted selection.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/efectos de los fármacos , Cadmio/toxicidad , Cobre/toxicidad , Cloruro de Sodio/toxicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , ADN de Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA