Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Immunol ; 213(1): 86-95, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787200

RESUMEN

The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3, also called cryopyrin) inflammasome is an intracellular innate immune complex, which consists of the pattern-recognition receptor NLRP3, the adaptor apoptosis-assciated speck-like protein containing a caspase recruitment domain, and procaspase-1. Aberrant activation of the NLRP3 inflammasome causes an autoinflammatory disease called cryopyrin-associated periodic syndrome (CAPS). CAPS is caused by gain-of-function mutations in the NLRP3-encoding gene CIAS1; however, the mechanism of CAPS pathogenesis has not been fully understood. Thus, unknown regulators of the NLRP3 inflammasome, which are associated with CAPS development, are being investigated. To identify novel components of the NLRP3 inflammasome, we performed a high-throughput screen using a human protein array, with NLRP3 as the bait. We identified a NLRP3-binding protein, which we called the cryopyrin-associated nano enhancer (CANE). We demonstrated that CANE increased IL-1ß secretion after NLRP3 inflammasome reconstitution in human embryonic kidney 293T cells and formed a "speck" in the cytosol, a hallmark of NLRP3 inflammasome activity. Reduced expression of endogenous CANE decreased IL-1ß secretion upon stimulation with the NLRP3 agonist nigericin. To investigate the role of CANE in vivo, we developed CANE-transgenic mice. The PBMCs and bone marrow-derived macrophages of CANE-transgenic mice exhibited increased IL-1ß secretion. Moreover, increased autoinflammatory neutrophil infiltration was observed in the s.c. tissue of CANE-transgenic versus wild-type mice; these phenotypes were consistent with those of CAPS model mice. These findings suggest that CANE, a component of the NLRP3 inflammasome, is a potential modulator of the inflammasome and a contributor to CAPS pathogenesis.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones , Humanos , Células HEK293 , Síndromes Periódicos Asociados a Criopirina/inmunología , Síndromes Periódicos Asociados a Criopirina/genética , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo , Ratones Noqueados
2.
Membranes (Basel) ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38392670

RESUMEN

Lysosomal degradation of tyrosinase, a pivotal enzyme in melanin synthesis, negatively impacts melanogenesis in melanocytes. Nevertheless, the precise molecular mechanisms by which lysosomes target tyrosinase have remained elusive. Here, we identify RING (Really Interesting New Gene) finger protein 152 (RNF152) as a membrane-associated ubiquitin ligase specifically targeting tyrosinase for the first time, utilizing AlphaScreen technology. We observed that modulating RNF152 levels in B16 cells, either via overexpression or siRNA knockdown, resulted in decreased or increased levels of both tyrosinase and melanin, respectively. Notably, RNF152 and tyrosinase co-localized at the trans-Golgi network (TGN). However, upon treatment with lysosomal inhibitors, both proteins appeared in the lysosomes, indicating that tyrosinase undergoes RNF152-mediated lysosomal degradation. Through ubiquitination assays, we found the indispensable roles of both the RING and transmembrane (TM) domains of RNF152 in facilitating tyrosinase ubiquitination. In summary, our findings underscore RNF152 as a tyrosinase-specific ubiquitin ligase essential for regulating melanogenesis in melanocytes.

3.
ACS Chem Biol ; 19(2): 497-505, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38270585

RESUMEN

The chemogenetic control of cellular protein stability using degron tags is a powerful experimental strategy in biomedical research. However, this technique requires permanent fusion of the degron to a target protein, which may interfere with the proper function of the protein. Here, we report a peptide fragment from the carboxyl terminus of ubiquitin as a cleavable linker that exhibits the slow but efficient cleavage of a degron tag via cellular deubiquitinating enzymes (DUBs). We designed a fusion protein consisting of a cleavable linker and a destabilizing domain (DD), which conditionally controls the expression and release of a target protein in a ligand-induced state, allowing the free unmodified protein to perform its function. Insertion of an AGIA epitope at the carboxyl terminus of the linker made space for the DUBs to access the site to assist the cleavage reaction when the amino terminus of the target protein caused steric hindrance. The developed system, termed a cleavable degron using ubiquitin-derived linkers (c-DUB), provides robust and tunable regulation of target proteins in their native forms. The c-DUB system is a useful tool for the regulation of proteins that have terminal sites that are essential for the proper localization and function. In addition, a mechanistic investigation using proximity labeling showed that DUBs associate with the refolded DD to reverse ubiquitination, suggesting a cellular surveillance system for distinguishing the refolded DD from misfolded proteins. The c-DUB method may benefit from this machinery so that DUBs subsequently cleave the neighboring linker.


Asunto(s)
Degrones , Ubiquitina , Ubiquitina/metabolismo , Proteínas/metabolismo , Ubiquitinación , Péptidos/metabolismo
4.
Nat Commun ; 14(1): 8301, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097606

RESUMEN

Receptor proteins, such as epidermal growth factor receptor (EGFR), interact with other proteins in the extracellular region of the cell membrane to drive intracellular signalling. Therefore, analysis of extracellular protein-protein interactions (exPPIs) is important for understanding the biological function of receptor proteins. Here, we present an approach using a proximity biotinylation enzyme (AirID) fusion fragment of antigen binding (FabID) to analyse the proximity exPPIs of EGFR. AirID was C-terminally fused to the Fab fragment against EGFR (EGFR-FabID), which could then biotinylate the extracellular region of EGFR in several cell lines. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis indicated that many known EGFR interactors were identified as proximity exPPIs, along with many unknown candidate interactors, using EGFR-FabID. Interestingly, these proximity exPPIs were influenced by treatment with EGF ligand and its specific kinase inhibitor, gefitinib. These results indicate that FabID provides accurate proximity exPPI analysis of target receptor proteins on cell membranes with ligand and drug responses.


Asunto(s)
Receptores ErbB , Espectrometría de Masas en Tándem , Fosforilación , Cromatografía Liquida , Ligandos , Receptores ErbB/metabolismo , Factor de Crecimiento Epidérmico/metabolismo
5.
RSC Chem Biol ; 4(11): 879-883, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920396

RESUMEN

We have successfully applied a bump-and-hole approach to establish orthogonal deubiquitination in which a ubiquitin substrate variant is specifically targeted by an engineered deubiquitinating enzyme (DUB). This makes it possibe to selectively observe and measure a single type of DUB activity in living cells.

6.
Antiviral Res ; 220: 105756, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992764

RESUMEN

New antiviral agents are needed for the treatment of hepatitis B virus (HBV) infection because currently available drugs do not completely eradicate chronic HBV in patients. Phosphorylation dynamics of the HBV core protein (HBc) regulate several processes in the HBV life cycle, including nucleocapsid formation, cell trafficking, and virus uncoating after entry. In this study, the SRPK inhibitors SPHINX31, SRPIN340, and SRPKIN-1 showed concentration-dependent anti-HBV activity. Detailed analysis of the effects of SRPKIN-1, which exhibited the strongest inhibitory activity, on the HBV replication process showed that it inhibits the formation of infectious particles by inhibiting pregenomic RNA packaging into capsids and nucleocapsid envelopment. Mass spectrometry analysis combined with cell-free translation system experiments revealed that hyperphosphorylation of the C-terminal domain of HBc is inhibited by SRPKIN-1. Further, SRPKIN-1 exhibited concentration-dependent inhibition of HBV infection not only in HepG2-hNTCP-C4 cells but also in fresh human hepatocytes (PXB cells) and in the single-round infection system. Treatment with SRPKIN-1 at the time of infection reduced the nuclease sensitivity of HBV DNA in the nuclear fraction. These results suggest that SRPKIN-1 has the potential to not only inhibit the HBV particle formation process but also impair the early stages of viral infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Replicación Viral , Células Hep G2 , Hepatitis B/metabolismo , Virión/metabolismo , ADN Viral/genética
7.
Front Bioeng Biotechnol ; 11: 1265582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771574

RESUMEN

The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR. This shark is an underutilized fishery resource readily available in East Asia coastal waters and can be safely handled without sharp teeth or venomous stingers. The administration of Venus fluorescent protein to Japanese topesharks markedly increased antigen-specific IgM and IgNAR antibodies in the blood. Both the phage-display library and the yeast-display library were constructed using RNA from immunized shark splenocytes. Each library was enriched by biopanning, and multiple antigen-specific VNARs were acquired. The obtained antibodies had affinities of 1 × 10-8 M order and showed high plasticity, retaining their binding activity even after high-temperature or reducing-agent treatment. The dissociation rate of a low-affinity VNAR was significantly improved via dimerization. These results demonstrate the potential utility of the Japanese topeshark for the development of VNAR. Furthermore, we conducted deep sequencing analysis to reveal the quantitative changes in the CDR3-coding sequences, revealing distinct enrichment bias between libraries. VNARs that were primarily enriched in the phage display had CDR3 coding sequences with fewer E. coli rare codons, suggesting translation machinery on the selection and enrichment process during biopanning.

8.
Nat Commun ; 14(1): 4683, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596276

RESUMEN

Lenalidomide, an immunomodulatory drug (IMiD), is commonly used as a first-line therapy in many haematological cancers, such as multiple myeloma (MM) and 5q myelodysplastic syndromes (5q MDS), and it functions as a molecular glue for the protein degradation of neosubstrates by CRL4CRBN. Proteolysis-targeting chimeras (PROTACs) using IMiDs with a target protein binder also induce the degradation of target proteins. The targeted protein degradation (TPD) of neosubstrates is crucial for IMiD therapy. However, current IMiDs and IMiD-based PROTACs also break down neosubstrates involved in embryonic development and disease progression. Here, we show that 6-position modifications of lenalidomide are essential for controlling neosubstrate selectivity; 6-fluoro lenalidomide induced the selective degradation of IKZF1, IKZF3, and CK1α, which are involved in anti-haematological cancer activity, and showed stronger anti-proliferative effects on MM and 5q MDS cell lines than lenalidomide. PROTACs using these lenalidomide derivatives for BET proteins induce the selective degradation of BET proteins with the same neosubstrate selectivity. PROTACs also exert anti-proliferative effects in all examined cell lines. Thus, 6-position-modified lenalidomide is a key molecule for selective TPD using thalidomide derivatives and PROTACs.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Síndromes Mielodisplásicos , Femenino , Embarazo , Humanos , Lenalidomida/farmacología , Proteolisis , Agentes Inmunomoduladores , Mieloma Múltiple/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Aberraciones Cromosómicas , Quimera Dirigida a la Proteólisis
9.
PLoS Pathog ; 19(8): e1011591, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585449

RESUMEN

Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Animales , Ratones , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Activación Transcripcional , Regulación hacia Arriba
10.
FEBS J ; 290(21): 5141-5157, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37500075

RESUMEN

Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica , Leucemia/genética
11.
Sci Rep ; 13(1): 10243, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353572

RESUMEN

Polypeptide tags and biotin labelling technologies are widely used for protein analyses in biochemistry and cell biology. However, many peptide tag epitopes contain lysine residues (or amino acids) that are masked after biotinylation. Here, we propose the GATS tag system without a lysine residue and with high sensitivity and low non-specific binding using a rabbit monoclonal antibody against Plasmodium falciparum glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (PfGAMA). From 14 monoclonal clones, an Ra3 clone was selected as it recognized an epitope-TLSVGVQNTF-without a lysine residue; this antibody and epitope tag set was called the GATS tag system. Surface plasmon resonance analysis showed that the tag system had a high affinity of 8.71 × 10-9 M. GATS tag indicated a very low background with remarkably high sensitivity and specificity in immunoblotting using the lysates of mammalian cells. It also showed a high sensitivity for immunoprecipitation and immunostaining of cultured human cells. The tag system was highly sensitive in both biotin labelling methods for proteins using NHS-Sulfo-biotin and BioID (proximity-dependent biotin identification) in the human cells, as opposed to a commercially available tag system having lysine residues, which showed reduced sensitivity. These results showed that the GATS tag system is suitable for methods such as BioID involving labelling lysine residues.


Asunto(s)
Biotina , Lisina , Animales , Humanos , Biotina/química , Biotinilación , Lisina/metabolismo , Péptidos/química , Epítopos , Anticuerpos Monoclonales , Mamíferos/metabolismo
12.
Plants (Basel) ; 12(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176805

RESUMEN

Plants defend against folivores by responding to folivore-derived elicitors following activation of signaling cascade networks. In Arabidopsis, HAK1, a receptor-like kinase, responds to polysaccharide elicitors (Frα) that are present in oral secretions of Spodoptera litura larvae to upregulate defense genes (e.g., PDF1.2) mediated through downstream cytoplasmic kinase PBL27. Here, we explored whether other protein kinases, including CPKs and CRKs, function with PBL27 in the intracellular signaling network for anti-herbivore responses. We showed that CRK2 and CRK3 were found to interact with PBL27, but CPKs did not. Although transcripts of PDF1.2 were upregulated in leaves of wild-type Arabidopsis plants in response to mechanical damage with Frα, this failed in CRK2- and PBL27-deficient mutant plants, indicating that the CRK2/PBL27 system is predominantly responsible for the Frα-responsive transcription of PDF1.2 in S. litura-damaged plants. In addition to CRK2-phosphorylated ERF13, as shown previously, ethylene signaling in connection to CRK2-phosphorylated PBL27 was predicted to be responsible for transcriptional regulation of a gene for ethylene response factor 13 (ERF13). Taken together, these findings show that CRK2 regulates not only ERF13 phosphorylation but also PBL27-dependent de novo synthesis of ERF13, thus determining active defense traits against S. litura larvae via transcriptional regulation of PDF1.2.

13.
Commun Biol ; 6(1): 448, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160969

RESUMEN

Gibberellin (GA) is a phytohormone that regulates various developmental processes during the plant life cycle. In this study, we identify a new GA agonist, diphegaractin, using a wheat cell-free based drug screening system with grape GA receptor. A GA-dependent interaction assay system using GA receptors and DELLA proteins from Vitis vinifera was constructed using AlphaScreen technology and cell-free produced proteins. From the chemical compound library, diphegaractin was found to enhance the interactions between GA receptors and DELLA proteins from grape in vitro. In grapes, we found that diphegaractin induces elongation of the bunch and increases the sugar concentration of grape berries. Furthermore, diphegaractin shows GA-like activity, including promotion of root elongation in lettuce and Arabidopsis, as well as reducing peel pigmentation and suppressing peel puffing in citrus fruit. To the best of our knowledge, this study is the first to successfully identify a GA receptor agonist showing GA-like activity in agricultural plants using an in vitro molecular-targeted drug screening system.


Asunto(s)
Arabidopsis , Giberelinas , Giberelinas/farmacología , Sistema Libre de Células , Reguladores del Crecimiento de las Plantas , Bioensayo , Agricultura
14.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674500

RESUMEN

JAV1-associated ubiquitin ligase 1 (JUL1) is a RING-type E3 ubiquitin ligase that catalyzes ubiquitination of JAV1, a jasmonate signaling repressor, in Arabidopsis thaliana in response to herbivore attack. Here we present a new insight into the nature of JUL1 as a multi-targeting enzyme for not only JAV1 but also transcription factors (TFs) screened using in vitro and in vivo protein interaction assays. Reporter assays using protoplasts showed that the JUL1-interacting TFs (JiTFs), including ERF15, bZIP53 and ORA59, were involved in transcriptional activation of jasmonate-responsive PDF1.2 and abscisic acid-responsive GEA6. Likewise, assays using mutant plants suggested that the 3 JiTFs were indeed responsible for transcriptional regulation of PDF1.2 and/or GEA6, and ERF15 and ORA59 were substantially responsible for the anti-herbivore trait. In vitro protein ubiqutination assays showed that JUL1 catalyzed ubiqutination of JAV1 but not any of the TFs. This was in accord with the finding that JUL1 abolished JAV1's interference with ERF15 function, according to the reporter assay. Moreover, of great interest is our finding that ERF15 but not bZIP53 or ORA59 serves as a scaffold for the JAV1/JUL1 system, indicating that there is narrow selectivity of the transcriptional reprogramming by the JAV1/JUL1 system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Cell Death Dis ; 13(8): 694, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941131

RESUMEN

Deubiquitinating enzymes (DUBs) regulate numerous cellular functions by removing ubiquitin modifications. We examined the effects of 88 human DUBs on linear ubiquitin chain assembly complex (LUBAC)-induced NF-κB activation, and identified OTUD1 as a potent suppressor. OTUD1 regulates the canonical NF-κB pathway by hydrolyzing K63-linked ubiquitin chains from NF-κB signaling factors, including LUBAC. OTUD1 negatively regulates the canonical NF-κB activation, apoptosis, and necroptosis, whereas OTUD1 upregulates the interferon (IFN) antiviral pathway. Mass spectrometric analysis showed that OTUD1 binds KEAP1, and the N-terminal intrinsically disordered region of OTUD1, which contains an ETGE motif, is indispensable for the KEAP1-binding. Indeed, OTUD1 is involved in the KEAP1-mediated antioxidant response and reactive oxygen species (ROS)-induced cell death, oxeiptosis. In Otud1-/--mice, inflammation, oxidative damage, and cell death were enhanced in inflammatory bowel disease, acute hepatitis, and sepsis models. Thus, OTUD1 is a crucial regulator for the inflammatory, innate immune, and oxidative stress responses and ROS-associated cell death pathways.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Animales , Muerte Celular , Enzimas Desubicuitinizantes/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
16.
Sci Rep ; 12(1): 10592, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732899

RESUMEN

Protein-protein interaction (PPI) analysis is a key process to understand protein functions. Recently, we constructed a human protein array (20 K human protein beads array) consisting of 19,712 recombinant human proteins produced by a wheat cell-free protein production system. Here, we developed a cell-free protein array technology for proximity biotinylation-based PPI identification (CF-PPiD). The proximity biotinylation enzyme AirID-fused TP53 and -IκBα proteins each biotinylated specific interacting proteins on a 1536-well magnetic plate. In addition, AirID-fused cereblon was shown to have drug-inducible PPIs using CF-PPiD. Using the human protein beads array with AirID-IκBα, 132 proteins were biotinylated, and then selected clones showed these biological interactions in cells. Although ZBTB9 was not immunoprecipitated, it was highly biotinylated by AirID-IκBα, suggesting that this system detected weak interactions. These results indicated that CF-PPiD is useful for the biochemical identification of directly interacting proteins.


Asunto(s)
Análisis por Matrices de Proteínas , Mapeo de Interacción de Proteínas , Biotinilación , Humanos , Inhibidor NF-kappaB alfa , Mapeo de Interacción de Proteínas/métodos , Proteínas Recombinantes
17.
Plant J ; 110(2): 470-481, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35061931

RESUMEN

The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.


Asunto(s)
Arabidopsis , Brachypodium , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
18.
Biochem Biophys Res Commun ; 592: 54-59, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35030423

RESUMEN

Proteins and antibodies labeled with biotin have been widely used for protein analysis, enzyme immunoassays, and diagnoses. Presently, they are prepared using either a chemical reaction involving a biotin N-hydroxysuccinimide (NHS) ester compound or by enzymatic biotin ligation using a combination of a biotinylation-peptide tag and Escherichia coli BirA. However, these methods are relatively complicated. Recently BirA was improved to TurboID, a highly active enzyme for proximity labeling with biotin. Here, we demonstrate a novel simple biotin labeling method for proteins and antibodies using TurboID. Purified TurboID was mixed with a protein or an antibody in the presence of biotin and ATP in the general biochemical buffer condition, followed by biotin labeling. Biotin labeling sites by TurboID were found on the surface of green fluorescent protein. Biotin labeling of IκBα by TurboID indicated its binding to RelA. Furthermore, TurboID-dependent biotin labeling of monoclonal antibodies from rabbits and mice could be directly used for immunoblotting detection of specific proteins without the purification step. These results indicate that TurboID provides a very useful and simple method for biotin labeling of functional proteins.


Asunto(s)
Anticuerpos/metabolismo , Biotina/metabolismo , Coloración y Etiquetado/métodos , Biotinilación , Proteínas Fluorescentes Verdes/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Unión Proteica
19.
Nat Commun ; 13(1): 183, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013300

RESUMEN

Proteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein-responsible for the 8p11 syndrome involved in acute myeloid leukaemia-as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein-protein interactions in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Bioensayo , Proteínas de Unión al ADN/genética , Hepatocitos/metabolismo , Linfocitos/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biotinilación , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfocitos/citología , Linfocitos/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Especificidad por Sustrato , Sulfonamidas/farmacología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476681

RESUMEN

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Asunto(s)
Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...