Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460641

RESUMEN

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Asunto(s)
Cisteína Endopeptidasas , Plasmodium falciparum , Pliegue de Proteína
2.
Biochem J ; 479(14): 1559-1579, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35770799

RESUMEN

The EccC enzyme of Mycobacterium tuberculosis ESX-1 secretion system is involved in EsxAB virulence factor secretion and offers an attractive target for antivirulence inhibitors development against M. tuberculosis. The EccCb1 polypeptide of the EccC enzyme contains two Ftsk/SpoIIIE type ATPase domains (D2 and D3) and binds to the EsxAB factor at the C-terminal region of the D3 domain. In the current study, we have determined a low-resolution structure of EccCb1, and its mechanism involved in ATPase activity and EsxAB factor binding. Small-angle X-ray scattering data yielded a double hexameric ring structure of EccCb1 in solution and was further confirmed by SEC-MALS and dynamic light scattering. ATPase activity of wild-type, D2, and D3 mutants showed that D2-K90A and D3-K382A mutations led to a complete loss of enzyme activity. The full-length EccCb1 showed ∼3.7-fold lower catalytic efficiency than D2 domain and ∼1.7 fold lower than D3 domain. The EsxAB factor binds EccCb1 with Kd ∼ 11.3 ± 0.6 nM and its affinity is enhanced ∼2 fold in presence of ATP + Mg2+. These data indicate the involvement of ATPase activity in EsxAB factor translocation. Molecular dynamics simulation on wild-type, ATP + Mg2+, and EsxAB + ATP + Mg2+ bound EccCb1 double-ring structure showed enhanced stability of enzyme upon ATP + Mg2+ and EsxAB binding. Overall, our study showed a low-resolution structure of EccCb1, and the mechanism involved in ATPase activity and EsxAB factor recognition, which can be targeted for the development of antivirulence drugs against M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Magnesio/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Sistemas de Secreción Tipo VII/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Front Oncol ; 11: 676948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490084

RESUMEN

Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.

4.
Int J Biol Macromol ; 189: 879-889, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34428493

RESUMEN

The EccC enzyme of ESX-1 system contains (i) a membrane bound Rv3870 with single ATPase domain and (ii) a cytoplasmic Rv3871 with two ATPase domains and involved in secretion of ESAT6/CFP10 factor out of the cell. In current study, we have structurally and biochemically characterized the ATPase domain (442-747 residues) of Rv3870 enzyme. The ΔRv3870 eluted as oligomer (~813 kDa) from Superdex 200 (16/60) column, as identified based on molecular mass standard and dynamics light scattering. The SAXS analysis yielded a tetrameric ring envelope of ΔRv3870, quite consistent to dynamic light scattering data. The ΔRv3870 exhibited ATPase activity having kinetic parameters, Km ~ 100 ± 40 µM, kcat ~ 1.81 ± 0.27 min-1 and Vmax ~ 54.41 µM/min/mg. ATPase activity using nine ΔRv3870 mutants showed 70-91% decrease in catalytic efficiency of the enzyme. ΔRv3870 binds Rv3871 with KD ~ 484.0 ± 10.3 nM and its catalytic efficiency is enhanced ~6.7-fold in presence of Rv3871. CD data revealed the high TM ~ 82.2 ± 0.5 °C for ΔRv3870 and enhanced in presence of ATP + Mg2+, as observed in dynamics simulation on ΔRv3870 hexameric models. Overall, our structural and biochemical studies on ΔRv3870 have explained the mechanism, which will contribute in development of antivirulence inhibitors against M. tuberculosis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Nucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Estabilidad de Enzimas , Cinética , Magnesio/metabolismo , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Homología Estructural de Proteína , Temperatura , Difracción de Rayos X
5.
Int J Biol Macromol ; 171: 28-36, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33412198

RESUMEN

Mycobacterium tuberculosis HddA enzyme phosphorylates the M7P substrate and converts it to M7PP product in GDP-D-α-D-heptose biosynthetic pathway. For structural and functional studies on MtbHddA, we have purified the enzyme, which eluted as a monomer from size exclusion column. Purified MtbHddA had ATPase activity. The SAXS analysis supported globular monomeric scattering profile of MtbHddA in solution. The CD analysis showed that MtbHddA contains 45% α-helix, 18% ß-stands, and 32% random coil structures and showed unfolding temperature (TM) ~ 47.5 °C. The unfolding temperature of MtbHddA is enhanced by 1.78±0.41 °C in ATP+Mg2+ bound state, 2.12±0.41 °C in Mannose bound state and 3.07±0.41 °C in Mannose+ ATP+Mg2+ bound state. The apo and M7P +ATP + Mg2+ complexed models of MtbHddA showed that enzyme adopts a classical GHMP sugar kinase fold with conserved ATP+Mg2+ and M7P binding sites. The dynamics simulation analysis on four MtbHddA models showed that ATP+Mg2+ and M7P binding enhanced the stability of active site conformation of MtbHddA. Our study provides important insights into MtbHddA structure and activity, which can be targeted for therapeutic development against M. tuberculosis.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Magnesio/química , Mycobacterium tuberculosis/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfatos de Azúcar/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Magnesio/metabolismo , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Fosfatos de Azúcar/metabolismo , Termodinámica
6.
Sci Rep ; 10(1): 20813, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257730

RESUMEN

M. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and antibiotic resistance to mycobacteria. In current study, we have performed the structural and biochemical analysis of M. tuberculosis GmhA, the first enzyme involved in D-sedoheptulose 7-phosphate isomerization in GDP-D-α-D-heptose biosynthetic pathway. The MtbGmhA enzyme exits as tetramer and small angle X-ray scattering analysis also yielded tetrameric envelope in solution. The MtbGmhA enzyme binds to D-sedoheptulose 7-phosphate with Km ~ 0.31 ± 0.06 mM-1 and coverts it to D-glycero-D-α-manno-heptose-7-phosphate with catalytic efficiency (kcat/Km) ~ 1.45 mM-1 s-1. The residues involved in D-sedoheptulose 7-phosphate and Zn2+ binding were identified using modeled MtbGmhA + D-sedoheptulose 7-phosphate + Zn2+ structure. To understand the role in catalysis, six site directed mutants of MtbGmhA were generated, which showed significant decrease in catalytic activity. The circular dichroism analysis showed ~ 46% α-helix, ~ 19% ß-sheet and ~ 35% random coil structures of MtbGmhA enzyme and melting temperature ~ 53.5 °C. Small angle X-ray scattering analysis showed the tetrameric envelope, which fitted well with modeled MtbGmhA tetramer in closed conformation. The MtbGmhA dynamics involved in D-sedoheptulose 7-phosphate and Zn2+ binding was identified using dynamics simulation and showed enhanced stability in presence of these ligands. Our biochemical data and structural knowledge have provided insight into mechanism of action of MtbGmhA enzyme, which can be targeted for novel antibiotics development against M. tuberculosis.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/biosíntesis , Mycobacterium tuberculosis/enzimología , Fosfatos de Azúcar/metabolismo , Isomerasas Aldosa-Cetosa/química , Dicroismo Circular , Modelos Moleculares
7.
Int J Biol Macromol ; 138: 309-320, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301397

RESUMEN

Metacaspases are clan CD cysteine peptidases found in plants, fungi and protozoa that possess a conserved Peptidase_C14 domain, homologous to the human caspases and a catalytic His/Cys dyad. Earlier reports have indicated the role of metacaspases in cell death; however, metacaspases of human malaria parasite remains poorly understood. In this study, we aimed to functionally characterize a novel malarial protease, P. falciparum metacaspase-3 (PfMCA3). Unlike other clan CD peptidases, PfMCA3 has an atypical active site serine (Ser1865) residue in place of canonical cysteine and it phylogenetically forms a distinct branch across the species. To investigate whether this domain retains catalytic activity, we expressed, purified and refolded the Peptidase_C14 domain of PfMCA3 which was found to express in all asexual stages. PfMCA3 exhibited trypsin-like serine protease activity with ser1865 acting as catalytic residue to cleave trypsin oligopeptide substrate. PfMCA3 is inhibited by trypsin-like serine protease inhibitors. Our study found that PfMCA3 enzymatic activity was abrogated when catalytic serine1865 (S1865A) was mutated. Moreover, PfMCA3 was found to be inactive against caspase substrate. Overall, our study characterizes a novel metacaspase of P. falciparum, different from human caspases and not responsible for the caspase-like activity, therefore, could be considered as a potential chemotherapeutic target.


Asunto(s)
Caspasas/metabolismo , Plasmodium falciparum/enzimología , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Inhibidores de Caspasas/farmacología , Caspasas/química , Caspasas/genética , Dominio Catalítico , Concentración de Iones de Hidrógeno , Cinética , Plasmodium falciparum/genética , Temperatura
8.
Int J Biol Macromol ; 136: 676-685, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31207333

RESUMEN

The M. tuberculosis GmhB protein converts the d-glycero-α-d-manno-heptose 1,7-bisphosphate (GMB) intermediate into d-glycero-α-d-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position. To understand the structure and substrate binding mechanism, the MtbGmhB was purified which elutes as monomer on gel filtration column. The small angle x-ray scattering analysis shows that MtbGmhB forms fully folded monomer with shape profile similar to its modeled structure. The circular dichroism analysis shows 38% α-helix, 15% ß-sheets and 47% random coil structures in MtbGmhB, similar to haloalkanoic acid dehalogenase (HAD) phosphohydrolase enzymes. The modeled MtbGmhB structure shows the catalytic site, which forms a concave, semicircular surface using the three loops around GMB substrate binding site. Dynamic simulation analysis on (i) Apo (ii) GMB bound (iii) GMB + Mg2+ bound (iv) Zn2+ +GMB + Mg2+ bound MtbGmhB structures show that Zn2+ as well as Mg2+ ions stabilize the loop conformation and trigger the changes in GMB substrate binding to active site of MtbGmhB. Upon demetallization, the large conformational changes occurred in ions binding loops, and leads to difference in GMB substrate binding to MtbGmhB. Our study provides information about structure and substrate binding of MtbGmhB, which may contribute in therapeutic development against M. tuberculosis.


Asunto(s)
Guanosina Difosfato/biosíntesis , Heptosas/biosíntesis , Mycobacterium tuberculosis/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Dominio Catalítico , Magnesio/metabolismo , Simulación del Acoplamiento Molecular , Zinc/metabolismo
9.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 397-398, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045570

RESUMEN

The article by Sharma et al. [(2018), Acta Cryst. F74, 656-663] is corrected.

10.
Exp Parasitol ; 197: 43-50, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30648557

RESUMEN

Falcipain-2 (FP2) and falcipain-3 (FP3) constitute the major hemoglobinases of Plasmodium falciparum. Previous biochemical and structural studies have explained the mechanism of inhibition of these enzymes by small molecules. However, a residue-level protein-protein interaction (PPI) with its natural macromolecular substrate, hemoglobin is not fully characterized. Earlier studies have identified a short motif in the C-terminal of FP2, an exosite protruding away from the active site, essential for hemoglobin degradation. Our structural and mutagenesis studies suggest that hemoglobin interacts with FP2 via specific interactions mediated by Glu185 and Val187 within the C-terminal motif, which are essential for hemoglobin binding. Since FP3 is also a major hemoglobinase and essential for parasite survival, we further demonstrate its interactions with hemoglobin. Our results suggest that Asp194 of FP3 is required for hemoglobin hydrolysis and residue-swap experiments confirmed that this position is functionally conserved between the two hemoglobinases. Residues involved in protein-protein interactions constitute important targets for drug-mediated inhibition. Targeting protein-protein interactions at exosites may likely be less susceptible to emergence of drug resistance and thus is a new field to explore in malaria.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Hemoglobinas/metabolismo , Plasmodium falciparum/enzimología , Ácido Aspártico/química , Clonación Molecular , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Ácido Glutámico/química , Hemoglobinas/química , Hidrólisis , Estructura Molecular , Mutagénesis , Plasmodium falciparum/genética
11.
Infect Drug Resist ; 11: 2377-2391, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538505

RESUMEN

BACKGROUND: Middle East respiratory syndrome (MERS) is caused by MERS coronavirus (MERS-CoV). Thus far, MERS outbreaks have been reported from Saudi Arabia (2013 and 2014) and South Korea (2015). No specific vaccine has yet been reported against MERS. PURPOSE: To address the urgent need for an MERS vaccine, in the present study, we have designed two multi-epitope vaccines (MEVs) against MERS utilizing several in silico methods and tools. METHODS: The design of both the multi-epitope vaccines (MEVs) are composed of cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) epitopes, screened form thirteen different proteins of MERS-CoV. Both the MEVs also carry potential B-cell linear epitope regions, B-cell discontinuous epitopes as well as interferon-γ-inducing epitopes. Human ß-defensin-2 and ß-defensin-3 were used as adjuvants to enhance the immune response of MEVs. To design the MEVs, short peptide molecular linkers were utilized to link screened most potential CTL epitopes, HTL epitopes and the adjuvants. Tertiary models for both the MEVs were generated, refined, and further studied for their molecular interaction with toll-like receptor 3. The cDNAs of both MEVs were generated and analyzed in silico for their expression in a mammalian host cell line (human). RESULTS: Screened CTL and HTL epitopes were found to have high propensity for stable molecular interaction with HLA alleles molecules. CTL epitopes were also found to have favorable molecular interaction within the cavity of transporter associated with antigen processing. The selected CTL and HTL epitopes jointly cover upto 94.0% of worldwide human population. Both the CTL and HTL MEVs molecular models have shown to have stable binding and complex formation propensity with toll-like receptor 3. The cDNA analysis of both the MEVs have shown high expression tendency in mammalian host cell line (human). CONCLUSION: After multistage in silico analysis, both the MEVs are predicted to elicit humoral as well as cell mediated immune response. Epitopes of the designed MEVs are predicted to cover large human population worldwide. Hence both the designed MEVs could be tried in vivo as potential vaccine candidates against MERS.

12.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 656-663, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30279318

RESUMEN

ERG3 (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors, which contain a highly conserved DNA-binding domain. The ETS family of transcription factors differ in their binding to promoter DNA sequences, and the mechanism of their DNA-sequence discrimination is little known. In the current study, crystals of the ETSi domain (the ETS domain of ERG3 containing a CID motif) in space group P41212 and of its complex with the E74 DNA sequence (DNA9) in space group C2221 were obtained and their structures were determined. Comparative structure analysis of the ETSi domain and its complex with DNA9 with previously determined structures of the ERGi domain (the ETS domain of ERG containing inhibitory motifs) in space group P65212 and of the ERGi-DNA12 complex in space group P41212 were performed. The ETSi domain is observed as a homodimer in solution as well as in the crystallographic asymmetric unit. Superposition of the structure of the ETSi domain on that of the ERGi domain showed a major conformational change at the C-terminal DNA-binding autoinhibitory (CID) motif, while minor changes are observed in the loop regions of the ETSi-domain structure. The ETSi-DNA9 complex in space group C2221 forms a structure that is quite similar to that of the ERG-DNA12 complex in space group P41212. Upon superposition of the complexes, major conformational changes are observed at the 5' and 3' ends of DNA9, while the conformation of the core GGA nucleotides was quite conserved. Comparison of the ETSi-DNA9 structure with known structures of ETS class 1 protein-DNA complexes shows the similarities and differences in the promoter DNA binding and specificity of the class 1 ETS proteins.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteína Proto-Oncogénica c-fli-1/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Mol Biochem Parasitol ; 220: 28-41, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29317266

RESUMEN

Earlier studies on Plasmodium apoptosis revealed the presence of proteases with caspases like- activity, which are known as "metacaspases". Although this family of cysteine proteases is structurally similar to caspases with Cys-His dyad but their evolutionary significance and functional relevance remains largely unknown. These proteases are considered to be an important target against malaria due to their absence in humans. In this report, we have biochemically characterized metacaspase-2 (PfMCA-2) of P.falciparum. Enzymatic assay showed that PfMCA-2 efficiently cleaved arginine/lysine specific peptide, but not caspase-specific substrate. Consistently, PfMCA-2 activity was sensitive to effector caspases inhibitor, Z-FA-FMK, and mildly inhibited by aprotinin and E-64. However, general caspase inhibitors such as Z-VAD-FMK and Z-DEVD-FMK had no effect on PfMCA-2 activity. Z-FA-FMK inhibits parasite growth with an IC50 value of 2.7 µM along with the notable morphological changes. PfMCA-2 specifically expressed in schizonts and gametocyte stages and there was a notable depletion of PfMCA-2 expression in Z-FA-FMK treated schizonts and gametocytes stages of parasite. Notably, PfMCA-2 cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease) and the proteolysis of PfTSN did not occur after treatment with the Z-FA-FMK. The production of large amount of reactive oxygen species in presence of Z-FA-FMK caused oxidative stress which in turn leads to loss of cell viability. The oxidative stress further generates positive feedback for the occurrence of cell death in term of phosphatidylserine externalization and DNA fragmentation in vitro.


Asunto(s)
Proteasas de Cisteína/metabolismo , Plasmodium falciparum/enzimología , Inhibidores de Cisteína Proteinasa/metabolismo , Dipéptidos/metabolismo , Perfilación de la Expresión Génica , Cetonas/metabolismo , Leucina/análogos & derivados , Leucina/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Especificidad por Sustrato
14.
J Mol Model ; 23(8): 241, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28744747

RESUMEN

Mycobacterium tuberculosis decaprenylphosphoryl-ß-D-ribose oxidase (MtbDprE1) acts in concert with decaprenylphosphoryl-ß-D-ribose 2-epimerase (MtbDprE2) and catalyzes the epimerization of DPR into DPA. DPA is the sole precursor for synthesis of arabinogalactan and lipoarabinomannan in the mycobacterial cell wall. MtbDprE1 is a unique antimalarial drug target and many covalent and non-covalent inhibitors against MtbDprE1 have been studied for their antituberculosis activities. In the current study, we have purified MtbDprE1 enzyme and synthesized six sulfur-rich 2-mercaptobenzothiazole and 1, 2, 3-triazole conjugated ligands and performed binding analysis with MtbDprE1. All ligands have shown competitive binding, as observed for other covalently and noncovalently bound MtbDprE1 inhibitors. Molecular docking analysis of six ligands with MtbDprE1 shows that they occupy the substrate binding pocket of MtbDprE1 and are stabilized by hydrogen bonds and van der Waals interactions. Our study shows that sulfur-rich 2-mercaptobenzothiazole ligands act as specific inhibitors against MtbDprE1 and could be used as antituberculosis agents.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Benzotiazoles/farmacología , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Triazoles/farmacología , Oxidorreductasas de Alcohol/metabolismo , Antituberculosos/metabolismo , Proteínas Bacterianas/metabolismo , Benzotiazoles/metabolismo , Unión Competitiva , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Mycobacterium tuberculosis/efectos de los fármacos , Triazoles/metabolismo
15.
PLoS One ; 9(4): e93008, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699522

RESUMEN

Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs). Structural studies of the ICPs of Trypanosoma cruzi (chagasin) and Plasmodium berghei (PbICP) indicated that three loops (termed BC, DE, and FG) are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.


Asunto(s)
Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Reacciones Cruzadas , Proteasas de Cisteína/química , Eritrocitos/patología , Hemoglobinas/metabolismo , Humanos , Enlace de Hidrógeno , Hidrólisis , Malaria Falciparum/patología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Plasmodium falciparum/genética , Conformación Proteica , Multimerización de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido
16.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 433-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699733

RESUMEN

The Mycobacterium tuberculosis ESX-1 secreted protein regulator (EspR, Rv3849) is the key protein that delivers bacterial proteins into the host cell during mycobacterial infection. EspR binds directly to the espACD operon and is involved in transcriptional activation. In the current study, M. tuberculosis EspR has been crystallized and its X-ray structure has been determined at 3.3 Šresolution in a P3221 crystal form. EspR forms a physiological dimer in the crystal. Each EspR monomer contains an N-terminal helix-turn-helix DNA-binding domain and a C-terminal dimerization domain. The EspR structure in the P3221 crystal form was compared with previously determined EspR structures in P32, P21 and P212121 crystal forms. Structural comparison analysis indicated that the N-terminal helix-turn-helix domain of EspR acquires a rigid structure in the four crystal forms. However, significant structural differences were observed in the C-terminal domain of EspR in the P21 crystal form when compared with the P3221 and P32 crystal forms. The interaction, stabilization energy and buried surface area analysis of EspR in the four different crystal forms have provided information about the physiological dimer interface of EspR.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Genes Reguladores , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/genética , Cristalización , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformación Proteica
17.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 2): 160-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24637748

RESUMEN

The CarD protein is highly expressed in mycobacterial strains under basal conditions and is transcriptionally induced during multiple types of genotoxic stress and starvation. The CarD protein binds the ß subunit of RNA polymerase and influences gene expression. The disruption of interactions between CarD and the ß subunit of RNA polymerase has a significant effect on mycobacterial survival, resistance to stress and pathogenesis. To understand the structure of CarD and its interaction with the ß subunit of RNA polymerase, Mycobacterium tuberculosis CarD (MtbCarD) and the Thermus aquaticus RNA polymerase ß subunit were recombinantly expressed and purified. Secondary-structure analysis using circular-dichroism spectroscopy indicated that MtbCarD contains ∼ 60% α-helix, ∼ 7% ß-sheet and ∼ 33% random-coil structure. The C-terminal domain of MtbCarD (CarD(83-161)) was crystallized and its X-ray structure was determined at 2.1 Å resolution. CarD(83-161) forms a distorted Y-shaped structure containing bundles of three helices connected by a loop. The residues forming the distorted Y-shaped structure are highly conserved in CarD sequences from other mycobacterial species. Comparison of the CarD(83-161) structure with the recently determined full-length M. tuberculosis and T. thermophilus CarD crystal structures revealed structural differences in residues 141-161 of the C-terminal domain of the CarD(83-161) structure. The structural changes in the CarD(83-161) structure occurred owing to proteolysis and crystallization artifacts.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/química , ARN Ribosómico/genética , Transcripción Genética/fisiología , Proteínas Bacterianas/fisiología , Dicroismo Circular , Cristalización , Cristalografía por Rayos X , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta , Thermus thermophilus/química
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1333-6, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23143243

RESUMEN

The Ergp55 protein belongs to the Ets family of transciption factors. The Ets transcription factors are involved in various developmental processes and the regulation of cancer metabolism. They contain a highly similar DNA-binding domain known as the ETS domain and have diverse functions in oncogenesis and physiology. The Ets transcription factors differ in their DNA-binding preference at the ETS site and the mechanisms by which they target genes are not clearly understood. To understand its DNA-binding mechanism, the ETS domain of Ergp55 was expressed and purified. The ETS domain was crystallized in the native form and in complex forms with DNA sequences from the E74 and cfos promoters. An X-ray diffraction data set was collected from an ETS-cfos DNA complex crystal at a wavelength of 0.9725 Šon the BM14 synchrotron beamline at the ESRF, France. The ETS-cfos DNA complex crystal belonged to space group C222(1), with four molecules in the asymmetric unit. For structure analysis, initial phases for the ETS-cfos DNA complex were obtained by the molecular-replacement technique with Phaser in the CCP4 suite using the coordinates of Fli-1 protein (PDB entry 1fli) and cfos DNA (PDB entry 1bc7) as search models. Structure analysis of the ETS-cfos DNA complex may possibly explain the DNA-binding specificity and its mechanism of interaction with the ETS domain of Ergp55.


Asunto(s)
Oligonucleótidos/química , Proteína Proto-Oncogénica c-ets-1/química , Proteínas Proto-Oncogénicas c-fos/genética , Secuencia de Bases , Cristalización , Cristalografía por Rayos X , Escherichia coli , Humanos , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteína Proto-Oncogénica c-ets-1/biosíntesis , Proteína Proto-Oncogénica c-ets-1/aislamiento & purificación
19.
PLoS One ; 7(10): e47227, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077573

RESUMEN

The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg¹85- Glu²²¹, Glu²¹°- Lys4°³) in falcipain-2, and one salt bridge (Arg²°²-Glu²³8) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe²¹4 Trp449 Trp45³) and falcipain-3 (Phe²³¹ Trp457 Trp46¹) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.


Asunto(s)
Cisteína Endopeptidasas/genética , Activación Enzimática/genética , Malaria Falciparum/enzimología , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Hemoglobinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Malaria Falciparum/parasitología , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
20.
PLoS One ; 7(6): e39850, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761914

RESUMEN

BACKGROUND: The Ergp55 protein belongs to Ets family of transcription factor. The Ets proteins are highly conserved in their DNA binding domain and involved in various development processes and regulation of cancer metabolism. To study the structure and DNA binding autoinhibition mechanism of Ergp55 protein, we have produced full length and smaller polypeptides of Ergp55 protein in E. coli and characterized using various biophysical techniques. RESULTS: The Ergp55 polypeptides contain large amount of α-helix and random coil structures as measured by circular dichorism spectroscopy. The full length Ergp55 forms a flexible and elongated molecule as revealed by molecular modeling, dynamics simulation and structural prediction algorithms. The binding analyses of Ergp55 polypeptides with target DNA sequences of E74 and cfos promoters indicate that longer fragments of Ergp55 (beyond the Ets domain) showed the evidence of auto-inhibition. This study also revealed the parts of Ergp55 protein that mediate auto-inhibition. SIGNIFICANCE: The current study will aid in designing the compounds that stabilize the inhibited form of Ergp55 and inhibit its binding to promoter DNA. It will contribute in the development of drugs targeting Ergp55 for the prostate cancer treatment.


Asunto(s)
ADN/metabolismo , Modelos Estructurales , Neoplasias de la Próstata/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factores de Transcripción/metabolismo , Algoritmos , Secuencia de Bases , Cromatografía en Gel , Dicroismo Circular , Humanos , Masculino , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Proteína Proto-Oncogénica c-ets-1/química , Resonancia por Plasmón de Superficie , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...