Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 14(3): e20125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34337867

RESUMEN

Whole-genome resequencing (WGRS) of 396 lines, consisting of 104 hybrid parental lines and 292 germplasm lines, were used to study the molecular basis of mid-parent heterosis (MPH) and to identify complementary heterotic patterns in pigeonpea [Cajanus cajan (L.) Millsp.] hybrids. The lines and hybrids were assessed for yield and yield-related traits in multiple environments. Our analysis showed positive MPH values in 78.6% of hybrids, confirming the potential of hybrid breeding in pigeonpea. By using genome-wide prediction and association mapping approaches, we identified 129 single nucleotide polymorphisms and 52 copy number variations with significant heterotic effects and also established a high-yielding heterotic pattern in pigeonpea. In summary, our study highlights the role of WGRS data in the study and use of heterosis in crops where hybrid breeding is expected to boost selection gain in order to ensure global food security.


Asunto(s)
Vigor Híbrido , Fitomejoramiento , Variaciones en el Número de Copia de ADN , Genómica , Sitios de Carácter Cuantitativo
2.
Theor Appl Genet ; 127(12): 2663-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25331300

RESUMEN

KEY MESSAGE: We report a likely candidate gene, CcTFL1, for determinacy in pigeonpea through candidate gene sequencing analysis, mapping, QTL analysis together with comparative genomics and expression profiling. Pigeonpea (Cajanus cajan) is the sixth most important legume crop grown on ~5 million hectares globally. Determinacy is an agronomically important trait selected during pigeonpea domestication. In the present study, seven genes related to determinacy/flowering pattern in pigeonpea were isolated through a comparative genomics approach. Single nucleotide polymorphism (SNP) analysis of these candidate genes on 142 pigeonpea lines found a strong association of SNPs with the determinacy trait for three of the genes. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a likely candidate for determinacy in pigeonpea since it explained 45-96 % of phenotypic variation for determinacy, 45 % for flowering time and 77 % for plant height. Comparative genomics analysis of CcTFL1 with the soybean (Glycine max) and common bean (Phaseolus vulgaris) genomes at the micro-syntenic level further enhanced our confidence in CcTFL1 as a likely candidate gene. These findings have been validated by expression analysis that showed down regulation of CcTFL1 in a determinate line in comparison to an indeterminate line. Gene-based markers developed in the present study will allow faster manipulation of the determinacy trait in future breeding programs of pigeonpea and will also help in the development of markers for these traits in other related legume species.


Asunto(s)
Cajanus/crecimiento & desarrollo , Cajanus/genética , Flores/crecimiento & desarrollo , Genes de Plantas , Secuencia de Bases , Mapeo Cromosómico , Hibridación Genómica Comparativa , Perfilación de la Expresión Génica , Ligamiento Genético , Genotipo , Datos de Secuencia Molecular , Phaseolus/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética
3.
PLoS One ; 9(2): e88568, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24533111

RESUMEN

Understanding genetic structure of Cajanus spp. is essential for achieving genetic improvement by quantitative trait loci (QTL) mapping or association studies and use of selected markers through genomic assisted breeding and genomic selection. After developing a comprehensive set of 1,616 single nucleotide polymorphism (SNPs) and their conversion into cost effective KASPar assays for pigeonpea (Cajanus cajan), we studied levels of genetic variability both within and between diverse set of Cajanus lines including 56 breeding lines, 21 landraces and 107 accessions from 18 wild species. These results revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, 75.8% of successful SNP assays revealed polymorphism, and more than 95% of these assays could be successfully transferred to related wild species. To show regional patterns of variation, we used STRUCTURE and Analysis of Molecular Variance (AMOVA) to partition variance among hierarchical sets of landraces and wild species at either the continental scale or within India. STRUCTURE separated most of the domesticated germplasm from wild ecotypes, and separates Australian and Asian wild species as has been found previously. Among Indian regions and states within regions, we found 36% of the variation between regions, and 64% within landraces or wilds within states. The highest level of polymorphism in wild relatives and landraces was found in Madhya Pradesh and Andhra Pradesh provinces of India representing the centre of origin and domestication of pigeonpea respectively.


Asunto(s)
Cajanus/genética , Genética de Población , Polimorfismo de Nucleótido Simple , Algoritmos , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Geografía , India , Sitios de Carácter Cuantitativo , Programas Informáticos
4.
Theor Appl Genet ; 125(6): 1325-38, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22772726

RESUMEN

Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.


Asunto(s)
Cajanus/genética , Mapeo Cromosómico , Cruzamiento , Genes de Plantas , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Fenotipo , Polen/genética , Polimorfismo Genético , Sitios de Carácter Cuantitativo
5.
BMC Plant Biol ; 11: 56, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21447154

RESUMEN

BACKGROUND: Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. RESULTS: A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. CONCLUSION: In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.


Asunto(s)
Cajanus/genética , Quimera/genética , Cromosomas Artificiales Bacterianos/genética , Repeticiones de Microsatélite , Secuencia de Bases , Mapeo Cromosómico , Marcadores Genéticos , Genotipo , Hibridación Genética , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA