Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 126(36): 6185-6193, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998622

RESUMEN

The conformational landscape of the medium-size cyclic ketone cycloundecanone has been investigated using chirped-pulse Fourier transform microwave spectroscopy and computational calculations. Nine conformations were observed in the rotational spectrum and identified from the comparison of experimental and theoretical rotational constants as well as the observed and predicted types of rotational transitions. All singly substituted 13C isotopologues were observed for the most abundant conformer, which allowed the determination of partial substitution and effective structures. The most abundant conformer dominates the rotational spectrum and is almost 40 times more abundant than the least abundant conformer. Conformational preferences are governed by the combination of transannular H···H and eclipsed HCCH interactions.


Asunto(s)
Cetonas , Microondas , Cicloparafinas , Conformación Molecular , Análisis Espectral
2.
Rev Sci Instrum ; 93(4): 044709, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489924

RESUMEN

We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of Favg=99.93%. All of the schematics, firmware, and software are open-source.

3.
Rev Sci Instrum ; 93(4): 043005, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489939

RESUMEN

A field programmable gate array (FPGA)-based timing and trigger control system has been developed for the Dynamic Compression Sector (DCS) user facility located at the Advanced Photon Source (APS) at Argonne National Laboratory. The DCS is a first-of-its-kind capability dedicated to dynamic compression science. All components of the DCS laser shock station-x-ray choppers, single-shot shutter, internal laser triggers, and shot diagnostics-must be synchronized with respect to the arrival of x rays in the hutch. An FPGA synchronized to the APS storage ring radio frequency clock (352 MHz) generates trigger signals for each stage of the laser and x-ray shutter system with low jitter. The developed FPGA-based control system was the first system used to control the laser and the shutter system since its commissioning, and it has been developing since then to improve the timing jitter. The system is composed of a Zynq FPGA, a debug card, line drivers, and a power supply. The delay and offsets of the trigger signals can be adjusted by using a user-friendly graphical user interface with high precision. The details of the system architecture, timing requirements, firmware, and software implementation along with the performance evaluation are presented in this paper. The system offers low timing jitter (15.5 ps rms) with respect to the APS 352 MHz clock, suitable for the 100 ps (FWHM) x-ray bunch duration at the APS.

4.
Chemphyschem ; 21(23): 2579-2584, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32954594

RESUMEN

1,4-Naphthoquinone (1,4-NQ) is an important product of naphthalene oxidation, and it appears as a motif in many biologically active compounds. We have investigated the structure of 1,4-NQ using chirped-pulse Fourier transform microwave spectroscopy and quantum chemistry calculations. The rotational spectra of the parent species, and its 13 C and 18 O isotopologues were observed in natural abundance, and their spectroscopic parameters were obtained. This allowed the determination of the substitution rs , mass-weighted rm and semi-experimental reSE structures of 1,4-NQ. The obtained structural parameters show that the quinone moiety mainly changes the structure of the benzene ring where it is inserted, modifying the C-C bonds to having predominantly single or double bond character. Furthermore, the molecular electrostatic surface potential reveals that the quinone ring becomes electron deficient while the benzene ring remains a nucleophile. The most electrophilic areas are the hydrogens attached to the double bond in the quinone ring. Knowledge of the nucleophilic and electrophilic areas in 1,4-NQ will help understanding its behaviour interacting with other molecules and guide modifications to tune its properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA