Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 20(9): 1833-1852, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35656640

RESUMEN

The Brassicaceae Camelina sativa (gold of pleasure) is now an established niche crop and being used as a transgenic host for a range of novel seed traits. Most notable of these is the accumulation of omega-3 long-chain polyunsaturates such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fatty acids normally only found in marine organisms. As part of continued efforts to optimize the accumulation of these non-native fatty acids via seed-specific expression of algal genes, a new series of iterative constructs was built and introduced into Camelina. Seed fatty acid composition was determined, and the presence of EPA and DHA was confirmed. To provide an additional level of evaluation, full environmental release was carried out on selected events, providing a real-world gauntlet against which to assess the performance of these novel lines. Composition of the seed oil triacylglycerol was determined by mass spectrometry, allowing for conclusions as to the contribution of different activities to the final accumulation of EPA and DHA. Since these data were derived from field-grown material, they also represent a robust demonstration of the stability of the omega-3 LC-PUFA trait in Camelina. We propose that field trialling should be routinely incorporated in the plant synthetic biology 'design-build-test-learn' cycle.


Asunto(s)
Brassicaceae , Ácidos Grasos Omega-3 , Brassicaceae/genética , Brassicaceae/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Plantas Modificadas Genéticamente/genética
2.
Plant J ; 106(5): 1247-1259, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33725374

RESUMEN

The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Diatomeas/metabolismo , Ácido Eicosapentaenoico/biosíntesis , Ácido Graso Desaturasas/metabolismo , Metabolismo de los Lípidos , Triglicéridos/metabolismo , Proteína Transportadora de Acilo/genética , Vías Biosintéticas , Diatomeas/genética , Ácido Graso Desaturasas/genética , Técnicas de Inactivación de Genes , Microalgas , Plastidios/enzimología
3.
Biotechnol Biofuels ; 13: 87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32467729

RESUMEN

BACKGROUND: Oleaginous microalgae represent a valuable resource for the production of high-value molecules. Considering the importance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) for human health and nutrition the yields of high-value eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) require significant improvement to meet demand; however, the current cost of production remains high. A promising approach is to metabolically engineer strains with enhanced levels of triacylglycerols (TAGs) enriched in EPA and DHA. RESULTS: Recently, we have engineered the marine diatom Phaeodactylum tricornutum to accumulate enhanced levels of DHA in TAG. To further improve the incorporation of omega-3 LC-PUFAs in TAG, we focused our effort on the identification of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT) capable of improving lipid production and the incorporation of DHA in TAG. DGAT is a key enzyme in lipid synthesis. Following a diatom based in vivo screen of candidate DGATs, a native P. tricornutum DGAT2B was taken forward for detailed characterisation. Overexpression of the endogenous P. tricornutum DGAT2B was confirmed by qRT-PCR and the transgenic strain grew successfully in comparison to wildtype. PtDGAT2B has broad substrate specificity with preferences for C16 and LC-PUFAs acyl groups. Moreover, the overexpression of an endogenous DGAT2B resulted in higher lipid yields and enhanced levels of DHA in TAG. Furthermore, a combined overexpression of the endogenous DGAT2B and ectopic expression of a Δ5-elongase showed how iterative metabolic engineering can be used to increase DHA and TAG content, irrespective of nitrogen treatment. CONCLUSION: This study provides further insight into lipid metabolism in P. tricornutum and suggests a metabolic engineering approach for the efficient production of EPA and DHA in microalgae.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32289503

RESUMEN

The mechanisms by which digested fat is absorbed and transported in the circulation are well documented. However, it is uncertain whether the molecular species composition of dietary fats influences the molecular species composition of meal-derived lipids in blood. This may be important because enzymes that remove meal-derived fatty acids from the circulation exhibit differential activities towards individual lipid molecular species. To determine the effect of consuming oils with different molecular compositions on the incorporation of 20:5n-3 and 22:6n-3 into plasma lipid molecular species. Men and women (18-30 years) consumed standardised meals containing 20:5n-5 and 22:6n-3 (total 450 mg) provided by an oil from transgenic Camelina sativa (CSO) or a blended fish oil (BFO) which differed in the composition of 20:5n-3 and 22:6n-3 - containing molecular species. Blood was collected during the subsequent 8 h. Samples were analysed by liquid chromatography-mass spectrometry. The molecular species composition of the test oils was distinct from the composition of plasma triacylglycerol (TG) or phosphatidylcholine (PC) molecular species at baseline and at 1.5 or 6 h after the meal. The rank order by concentration of both plasma PC and TG molecular species at baseline was maintained during the postprandial period. 20:5n-3 and 22:6n-3 were incorporated preferentially into plasma PC compared to plasma TG. Together these findings suggest that the composition of dietary lipids undergoes extensive rearrangement after absorption, such that plasma TG and PC maintain their molecular species composition, which may facilitate lipase activities in blood and/or influence lipoprotein structural stability and function.


Asunto(s)
Brassicaceae/química , Fosfatidilcolinas/sangre , Aceites de Plantas/análisis , Periodo Posprandial , Triglicéridos/sangre , Adolescente , Adulto , Femenino , Humanos , Masculino , Aceites de Plantas/administración & dosificación , Adulto Joven
5.
Plant Biotechnol J ; 18(11): 2280-2291, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32304615

RESUMEN

The transgene-directed accumulation of non-native omega-3 long chain polyunsaturated fatty acids in the seed oil of Camelina sativa (Camelina) was evaluated in the field, in distinct geographical and regulatory locations. A construct, DHA2015.1, containing an optimal combination of biosynthetic genes, was selected for experimental field release in the UK, USA and Canada, and the accumulation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) determined. The occurrence of these fatty acids in different triacylglycerol species was monitored and found to follow a broad trend irrespective of the agricultural environment. This is a clear demonstration of the stability and robust nature of the transgenic trait for omega-3 long chain polyunsaturated fatty acids in Camelina. Examination of non-seed tissues for the unintended accumulation of EPA and DHA failed to identify their presence in leaf, stem, flower, anther or capsule shell material, confirming the seed-specific accumulation of these novel fatty acids. Collectively, these data confirm the promise of GM plant-based sources of so-called omega-3 fish oils as a sustainable replacement for oceanically derived oils.


Asunto(s)
Brassicaceae , Ácidos Grasos Omega-3 , Brassicaceae/genética , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Aceites de Pescado , Plantas Modificadas Genéticamente/genética
6.
Curr Opin Biotechnol ; 61: 122-127, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31911264

RESUMEN

The global challenges of ensuring sufficient safe and nutritious food for all are enshrined within the Sustainable Development Goals. As our planet's population continues to grow, and as the impacts of climate change and environmental pollution become more visible to all, new solutions continue to be sought as to how best address these. Transgenic crops specifically focussed on delivering health-beneficial compounds will likely play a role in this, and this review will consider several areas where good progress has been made. In particular, the transition from basic research to commercial product is a journey that more and more projects are embarking on, hopefully leading to the fulfilment of earlier promises as to the potential of genetically modified (GM) plants to deliver improved human nutrition.


Asunto(s)
Cambio Climático , Productos Agrícolas/genética , Humanos , Plantas Modificadas Genéticamente
7.
Sci Rep ; 9(1): 11444, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391507

RESUMEN

There is an urgent requirement for sustainable sources of food and feed due to world population growth. Aquaculture relies heavily on the fish meal and fish oils derived from capture fisheries, challenging sustainability of the production system. Furthermore, substitution of fish oil with vegetable oil and fish meal with plant seed meals in aquaculture feeds reduces the levels of valuable omega-3 long chain polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, and lowers the nutritional value due to the presence of phytate. Addition of exogenous phytase to fish feed is beneficial for enhancing animal health and reducing phosphorus pollution. We have engineered the marine diatom Phaeodactylum tricornutum, accumulating high levels of EPA and DHA together with recombinant proteins: the fungal Aspergillus niger PhyA or the bacterial Escherichia coli AppA phytases. The removal of the N-terminal signal peptide further increased phytase activity. Strains engineered with fcpA and CIP1 promoters showed the highest level of phytase activity. The best engineered strain achieved up to 40,000 phytase activity units (FTU) per gram of soluble protein, thus demonstrating the feasibility of development of multifunctionalized microalgae to simultaneously produce industrially useful proteins and fatty acids to meet the demand of intensive fish farming activity.


Asunto(s)
6-Fitasa/metabolismo , Fosfatasa Ácida/metabolismo , Alimentación Animal , Diatomeas/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Grasos Omega-3/biosíntesis , Proteínas Fúngicas/metabolismo , Desarrollo Sostenible , 6-Fitasa/genética , Fosfatasa Ácida/genética , Aspergillus niger/enzimología , Diatomeas/genética , Proteínas de Escherichia coli/genética , Estudios de Factibilidad , Explotaciones Pesqueras , Proteínas Fúngicas/genética , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Microalgas/genética , Microalgas/metabolismo
8.
Nat Plants ; 5(6): 563-567, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31160704

RESUMEN

The potential for using genetic modification (GM) to enhance the nutritional composition of crops (for either direct human consumption or as animal feed) has been recognized since the dawn of the GM era, with such 'output' traits being considered as distinct, if not potentially superior, to 'input' traits such as herbicide tolerance and insect resistance. However, while input traits have successfully been used and now form the basis of GM agriculture, output trait GM crops are still lagging behind after 20 years. This is despite the demonstrable benefits that some nutritionally enhanced crops would bring and the proven value of GM technologies. This Review considers the present state of nutritional enhancement through GM, highlighting two high-profile examples of nutritional enhancement-Golden Rice and omega-3 fish oil crops-systematically evaluating the progress, problems and pitfalls associated with the development of these traits. This includes not just the underlying metabolic engineering, but also the requirements to demonstrate efficacy and field performance of the crops and consideration of regulatory, intellectual property and consumer acceptance issues.


Asunto(s)
Productos Agrícolas/genética , Alimentos Modificados Genéticamente , Valor Nutritivo , Plantas Modificadas Genéticamente , Animales , Ácidos Grasos Omega-3/genética , Peces/genética , Humanos , Nutrigenómica , Oryza/genética
9.
Br J Nutr ; 121(11): 1235-1246, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975228

RESUMEN

EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.


Asunto(s)
Camellia , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceites de Plantas/administración & dosificación , Adolescente , Adulto , Anciano , Colesterol/sangre , Estudios Cruzados , Método Doble Ciego , Ácidos Grasos no Esterificados/sangre , Femenino , Aceites de Pescado/química , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/sangre , Aceites de Plantas/química , Plantas Modificadas Genéticamente/química , Periodo Posprandial/efectos de los fármacos , Semillas/química , Adulto Joven
10.
Br J Nutr ; 119(12): 1378-1392, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29845899

RESUMEN

Facing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.


Asunto(s)
Alimentación Animal/análisis , Brassicaceae/química , Brassicaceae/genética , Ácidos Grasos Insaturados/administración & dosificación , Aceites de Plantas/administración & dosificación , Salmo salar/crecimiento & desarrollo , Animales , Dieta/veterinaria , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Macrófagos/metabolismo , Plantas Modificadas Genéticamente , Salmo salar/genética , Salmo salar/metabolismo , Transcriptoma
11.
Sci Rep ; 7(1): 6570, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747792

RESUMEN

There is considerable interest in the de novo production of omega-3 long chain polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), not least of all given the importance of these fatty acids in both aquaculture and human nutrition. Previously we have demonstrated the feasibility of using metabolic engineering in transgenic plants (Camelina sativa) to modify the seed oil composition to now include EPA and/or DHA. In this study, we further tailored the seed oil profile to reduce the omega-6 content, and evaluated the performance of such GM plants under field conditions (i.e. environmental releases), in terms of agronomic performance and also the lipidomic profile of seed oil. We used MALDI- mass spectrometry imaging to identify discrete tissue-types in the seed in which these non-native fatty acids preferentially accumulated. Collectively, these data provide new insights into the complexity of plant lipid metabolism and the challenges associated with predictive manipulation of these pathways. However, this study identified the likely dispensable nature of a Δ12-desturase activity in our omega-3 metabolic engineering rationales for Camelina.


Asunto(s)
Brassicaceae/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ingeniería Metabólica/métodos , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Brassicaceae/genética , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Insaturados/análisis , Aceites de Plantas/química , Plantas Modificadas Genéticamente/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28717017

RESUMEN

Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Asunto(s)
Carbono/metabolismo , Frío , Diatomeas/metabolismo , Lípidos/biosíntesis , Bioingeniería , Metabolismo de los Lípidos , Estrés Fisiológico
13.
PLoS One ; 12(4): e0175415, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403232

RESUMEN

New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.


Asunto(s)
Alimentación Animal , Brassicaceae/química , Mucosa Intestinal/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Salmo salar/crecimiento & desarrollo , Transcriptoma , Animales , Brassicaceae/genética , Ácidos Docosahexaenoicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Aceites de Pescado/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Células Caliciformes/citología , Intestinos/citología , Metabolismo de los Lípidos , Plantas Modificadas Genéticamente/genética , Salmo salar/metabolismo
14.
Plant Physiol ; 173(4): 2060-2080, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28235892

RESUMEN

The picoalga Ostreococcus tauri is a minimal photosynthetic eukaryote that has been used as a model system. O. tauri is known to efficiently produce docosahexaenoic acid (DHA). We provide a comprehensive study of the glycerolipidome of O. tauri and validate this species as model for related picoeukaryotes. O. tauri lipids displayed unique features that combined traits from the green and the chromalveolate lineages. The betaine lipid diacylglyceryl-hydroxymethyl-trimethyl-ß-alanine and phosphatidyldimethylpropanethiol, both hallmarks of chromalveolates, were identified as presumed extraplastidial lipids. DHA was confined to these lipids, while plastidial lipids of prokaryotic type were characterized by the overwhelming presence of ω-3 C18 polyunsaturated fatty acids (FAs), 18:5 being restricted to galactolipids. C16:4, an FA typical of green microalgae galactolipids, also was a major component of O. tauri extraplastidial lipids, while the 16:4-coenzyme A (CoA) species was not detected. Triacylglycerols (TAGs) displayed the complete panel of FAs, and many species exhibited combinations of FAs diagnostic for plastidial and extraplastidial lipids. Importantly, under nutrient deprivation, 16:4 and ω-3 C18 polyunsaturated FAs accumulated into de novo synthesized TAGs while DHA-TAG species remained rather stable, indicating an increased contribution of FAs of plastidial origin to TAG synthesis. Nutrient deprivation further severely down-regulated the conversion of 18:3 to 18:4, resulting in obvious inversion of the 18:3/18:4 ratio in plastidial lipids, TAGs, as well as acyl-CoAs. The fine-tuned and dynamic regulation of the 18:3/18:4 ratio suggested an important physiological role of these FAs in photosynthetic membranes. Acyl position in structural and storage lipids together with acyl-CoA analysis further help to determine mechanisms possibly involved in glycerolipid synthesis.


Asunto(s)
Chlorophyta/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Glicéridos/metabolismo , Metabolismo de los Lípidos , Chlorophyta/genética , Chlorophyta/ultraestructura , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Cromatografía en Capa Delgada/métodos , Ácidos Grasos/metabolismo , Microalgas/clasificación , Microalgas/genética , Microalgas/metabolismo , Microscopía Electrónica de Transmisión , Filogenia , Almidón/metabolismo , Espectrometría de Masas en Tándem , Tilacoides/metabolismo , Tilacoides/ultraestructura , Triglicéridos/metabolismo
15.
Plant Physiol ; 173(1): 742-759, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27895203

RESUMEN

Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas Algáceas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Galactolípidos/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Estramenopilos/metabolismo , Acetiltransferasas/genética , Proteínas Algáceas/genética , Clonación Molecular , Ácido Eicosapentaenoico/genética , Ácidos Grasos Insaturados/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Esfingolípidos/metabolismo , Estramenopilos/genética , Tilacoides/genética , Tilacoides/ultraestructura , Triglicéridos/metabolismo , Levaduras/genética
16.
PLoS One ; 11(10): e0164673, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736949

RESUMEN

Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.


Asunto(s)
Betaína/metabolismo , Diatomeas/metabolismo , Ácidos Grasos/metabolismo , Heptosas/metabolismo , Metaboloma , Nitrógeno/metabolismo , Triglicéridos/metabolismo , Acilcoenzima A/análisis , Betaína/química , Biomasa , Ciclo del Ácido Cítrico , Diatomeas/crecimiento & desarrollo , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas , Luz , Metaboloma/efectos de la radiación
17.
Plant J ; 87(1): 76-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27483205

RESUMEN

Plant seed lipid metabolism is an area of intensive research, including many examples of transgenic events in which oil composition has been modified. In the selected examples described in this review, progress towards the predictive manipulation of metabolism and the reconstitution of desired traits in a non-native host is considered. The advantages of a particular oilseed crop, Camelina sativa, as a flexible and utilitarian chassis for advanced metabolic engineering and applied synthetic biology are considered, as are the issues that still represent gaps in our ability to predictably alter plant lipid biosynthesis. Opportunities to deliver useful bio-based products via transgenic plants are described, some of which represent the most complex genetic engineering in plants to date. Future prospects are considered, with a focus on the desire to transition to more (computationally) directed manipulations of metabolism.


Asunto(s)
Biotecnología/métodos , Ingeniería Metabólica/métodos , Aceites de Plantas/metabolismo , Brassicaceae/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
18.
PLoS One ; 11(7): e0159934, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27454884

RESUMEN

Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.


Asunto(s)
Alimentación Animal , Brassicaceae/metabolismo , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Aceites de Plantas , Salmo salar/metabolismo , Animales , Brassicaceae/química , Brassicaceae/genética , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Grasos/química , Ácidos Grasos Omega-3/química , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Lípidos/química , Hígado/metabolismo , Lisosomas , Ingeniería Metabólica , Evaluación Nutricional , Especificidad de Órganos , Peroxidasa , Extractos Vegetales/química , Aceites de Plantas/química , Plantas Modificadas Genéticamente , Salmo salar/genética , Salmo salar/crecimiento & desarrollo , Semillas/química , Transcriptoma
19.
Mar Drugs ; 14(3)2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-27005636

RESUMEN

We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.


Asunto(s)
Diatomeas/metabolismo , Ácidos Docosahexaenoicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Oscuridad , Ácidos Docosahexaenoicos/aislamiento & purificación , Ácido Eicosapentaenoico/aislamiento & purificación , Glucosa/química , Procesos Heterotróficos , Luz , Ingeniería Metabólica/métodos
20.
J Nutr ; 146(2): 227-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791554

RESUMEN

BACKGROUND: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. OBJECTIVE: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. METHODS: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil-containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. RESULTS: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36-38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator-activated receptor α (Ppara), and peroxisome proliferator-activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. CONCLUSIONS: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial.


Asunto(s)
Brassicaceae/genética , Dieta , Ácido Eicosapentaenoico/administración & dosificación , Aceites de Pescado/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Semillas/química , Animales , Disponibilidad Biológica , Glucemia/metabolismo , Brassicaceae/química , delta-5 Desaturasa de Ácido Graso , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacocinética , Ácido Graso Desaturasas/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Aceites de Plantas/farmacocinética , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...