Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(9): 3114-3121, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37013805

RESUMEN

BACKGROUND: Photostability is an important property in agrochemicals, impacting their biological efficacy, environmental fate and registrability. As such, it is a property that is routinely measured during the development of new active ingredients and their formulations. To make these measurements, compounds are typically exposed to simulated sunlight after application to a glass substrate. While useful, these measurements neglect key factors that influence photostability under true field conditions. Most importantly, they neglect the fact that compounds are applied to living plant tissue, and that uptake and movement within this tissue provides a mechanism to protect compounds from photodegradation. RESULTS: In this work, we introduce a new photostability assay incorporating leaf tissue as a substrate, designed to run at medium throughput under standardized laboratory conditions. Using three test cases, we demonstrate that our leaf-disc-based assays provides quantitatively different photochemical loss profiles to an assay employing a glass substrate. And we also demonstrate that these different loss profiles are intimately linked to the physical properties of the compounds, the effect that those properties have on foliar uptake and, thereby, the availability of the active ingredient on the leaf surface. CONCLUSIONS: The method presented provides a quick and simple measure of the interplay between abiotic loss processes and foliar uptake, supplying additional information to facilitate the interpretation of biological efficacy data. The comparison of loss between glass slides and leaves also provides a better understanding of when intrinsic photodegradation is likely to be a good model for a compound's behaviour under field conditions. © 2023 Society of Chemical Industry.


Asunto(s)
Agroquímicos , Plantas , Agroquímicos/metabolismo , Hojas de la Planta/metabolismo
2.
Bioorg Med Chem Lett ; 28(3): 339-343, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29317169

RESUMEN

Novel 2-aryl-cyclic-1,3-diones containing a 5-methoxy-[1,2,5]triazepane unit were explored towards an effective and wheat safe control of grass weeds. Their preparation builds on the ease of synthetic access to 7-membered heterocyclic [1,2,5]triazepane building blocks. Substitution and pattern hopping in the phenyl moiety revealed structure-activity relationships in good agreement with previously disclosed observations amongst the pinoxaden family of acetyl-CoA carboxylase inhibitors. In light of basic physicochemical, enzyme inhibitory and binding site properties, the N-methoxy functionality effectively acts as a bioisostere of the ether group in the seven-membered hydrazine ring.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Herbicidas/farmacología , Cetonas/farmacología , Acetil-CoA Carboxilasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Herbicidas/síntesis química , Herbicidas/química , Cetonas/síntesis química , Cetonas/química , Estructura Molecular , Relación Estructura-Actividad
3.
Pest Manag Sci ; 72(11): 2054-2068, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26940902

RESUMEN

BACKGROUND: Strigolactones play an important role in the rhizosphere as signalling molecules stimulating the seed germination of parasitic weed seeds and hyphal branching of arbuscular micorrhiza, and also act as hormones in plant roots and shoots. Strigolactone derivatives, e.g. strigolactams, could be used as suicidal germination inducers in the absence of a host crop for the decontamination of land infested with parasitic weed seeds. RESULTS: We report the stereoselective synthesis of novel strigolactams, together with some of their critical physicochemical properties, such as water solubility, hydrolytic stability, as well as their short soil persistence. In addition, we show that such strigolactams are potent germination stimulants of O. cumana parasitic weed seeds and do not affect the seed germination and the root growth of sunflower. CONCLUSIONS: The novel strigolactam derivatives described here compare favourably with the corresponding GR-28 strigolactones in terms of biological activity and physicochemical properties. However, we believe strigolactone and strigolactam derivatives require further structural optimisation to improve their soil persistence to demonstrate a potential for agronomical applications. © 2016 Society of Chemical Industry.


Asunto(s)
Germinación/efectos de los fármacos , Helianthus/efectos de los fármacos , Lactamas/farmacología , Orobanche/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Lactamas/síntesis química , Lactamas/química , Lactonas/química , Orobanche/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...