Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Waste Manag ; 150: 202-207, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850005

RESUMEN

The United States (U.S.) aims to reduce half of food loss and waste (FLW) by 2030. To achieve this goal, the public, academic, and political attentions on FLW have been increasing, and a series of actions have been implemented. However, the actions lack consideration on the categorical priority of FLW mitigation in relation to environmental footprints. In this article, we compare the FLW of three main plant food categories (i.e., grains, vegetables, and fruits) and their water and carbon footprints during 1970-2017. The vegetable FLW doubled during the period, reaching 3.39 × 1010 kg in 2017, which was 5- and 2-fold higher than the FLW of grains and fruits, respectively. The FLW of vegetables, grains, and fruits contributed 29%, 47%, and 24% to the total blue water wasted through FLW. The total carbon dioxide emissions generated by plant FLW were contributed by vegetables with 50%, grains with 31%, and fruits with 19%. Canonical correspondence analysis indicates that vegetable FLW had a higher positive correlation with urbanization, household incomes, gross domestic product, and high-income population than grain FLW, whereas fruit FLW was not influenced by these socioeconomic factors. Therefore, we suggest that the FLW mitigation should be prioritized on vegetables. Specific strategies include local food sourcing, shortening food miles, building food belts, and developing controlled-environment agriculture. Our data-based comparisons provide valuable insights into food policy improvement for achieving the 2030 reduction goal of the U.S., but the insights could be improved by considering the influences of foods imported from other nations.


Asunto(s)
Frutas , Verduras , Huella de Carbono , Abastecimiento de Alimentos , Estados Unidos , Agua
2.
Front Bioeng Biotechnol ; 9: 767313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869280

RESUMEN

Technologies enabling on-site environmental detection or medical diagnostics in resource-limited settings have a strong disruptive potential compared to current analytical approaches that require trained personnel in laboratories with immobile, resource intensive instrumentation. Handheld devices, such as smartphones, are now routinely produced with CPUs, RAM, wireless data transfer capabilities, and high-resolution complementary metal oxide semiconductor (CMOS) cameras capable of supporting the capture and processing of bioluminescent signals. In theory, combining the capabilities of these devices with continuously bioluminescent human cell-based bioreporters would allow them to replicate the functionality of more expensive, more complex, and less flexible platforms while supporting human-relevant conclusions. In this work, we compare the performance of smartphone (CMOS) and night vision (image intensifier) devices with in vivo (CCD camera), and in vitro (photomultiplier tube) laboratory instrumentation for monitoring signal dynamics from continuously bioluminescent human cellular models under toxic, stable, and induced expression scenarios. All systems detected bioluminescence from cells at common plating densities. While the in vivo and in vitro systems were more sensitive and detected signal dynamics representing cellular health changes earlier, the night vision and smartphone systems also detected these changes with relatively similar coefficients of variation and linear detection capabilities. The smartphone system did not detect transcriptional induction. The night vision system did detect transcriptional activation, but was less sensitive than the in vivo or in vitro systems and required a stronger induction before the change could be resolved.

3.
Biotechniques ; 71(2): 403-415, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34350768

RESUMEN

Due to the public health concerns of endocrine-disrupting chemicals, there is an increasing demand to develop improved high-throughput detection assays for enhanced exposure control and risk assessment. A substrate-free, autobioluminescent HEK293ARE/Gal4-Lux assay was developed to screen compounds for their ability to induce androgen receptor (AR)-mediated transcriptional activation. The assay was validated against a group of 40 recommended chemicals and achieved an overall 87.5% accuracy in qualitatively classifying positive and negative AR agonists. The HEK293ARE/Gal4-Lux assay was demonstrated as a suitable tool for Tier 1 AR agonist screening. By eliminating exogenous substrate, this assay provided a significant advantage over traditional reporter assays by enabling higher-throughput screening with reduced testing costs while maintaining detection accuracy.


Asunto(s)
Andrógenos , Bioensayo , Activación Transcripcional , Genes Reporteros , Células HEK293 , Humanos
4.
Environ Sci Technol ; 55(3): 1446-1455, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442981

RESUMEN

Food, energy, and water (FEW) systems have been recognized as an issue of critical global importance. Understanding the mechanisms that govern the FEW nexus is essential to develop solutions and avoid humanitarian crises of displacement, famine, and disease. The U.S. and China are the world's leading economies. Although the two nations are shaped by fundamentally different political and economic systems, they share FEW trajectories in several complementary ways. These realities place the U.S. and China in unique positions to engage in problem definition, dialogue, actions, and transdisciplinary convergence of research to achieve productive solutions addressing FEW challenges. By comparing the nexus and functions of the FEW systems in the two nations, this perspective aims to facilitate collaborative innovations that reduce disciplinary silos, mitigate FEW challenges, and enhance environmental sustainability. The review of experiences and challenges facing the U.S. and China also offers valuable insights for other nations seeking to achieve sustainable development goals.


Asunto(s)
Abastecimiento de Alimentos , Agua , China , Alimentos , Estados Unidos
5.
J Environ Qual ; 49(3): 640-653, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33016407

RESUMEN

Parameter estimation is needed for process management, design, and reactor scaling when values from the literature vary tremendously or are unavailable. A Bayesian approach, implemented via Markov chain Monte Carlo (MCMC) simulations using SAS software, was used to estimate the kinetic parameters of toluene and trichloroethylene (TCE) biodegradation by the microorganism Pseudomonas putida F1 in batch cultures. The prediction capabilities of Bayesian estimation were illustrated by comparing predicted and observed data and reported in goodness-of-fit statistics. The sensitivity analysis showed that the parameters obtained using this approach were consistent under the designated toluene and TCE concentration range. Moreover, the impact of TCE on toluene degradation kinetics was numerically exhibited, verifying the fact that TCE was able to stimulate toluene degradation; hence, TCE's presence increased the apparent maximum toluene-specific rate. Various kinetic models were explored at different degrees of complexity. At a low TCE concentration range (e.g., <2 mg L-1 ), a simplified Michaelis-Menten model (i.e., substrate half-saturation parameters approximated the inhibition parameters) was adequate to describe the reaction kinetics. However, at a higher TCE range (e.g., 5 mg L-1 ), a full-scale Michaelis-Menten model was needed to discriminate among the inhibition parameters in the model. The results demonstrated that a Bayesian estimation method is particularly useful for determining complex bioreaction kinetic parameters in the presence of a small volume of experimental data.


Asunto(s)
Tricloroetileno , Teorema de Bayes , Biodegradación Ambiental , Cinética , Tolueno
6.
BMC Biol ; 18(1): 79, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620121

RESUMEN

BACKGROUND: Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous. RESULTS: We report that artificial subdivision of the bacterial luciferin and luciferase pathway subcomponents enables continuous or inducible bioluminescence in pluripotent and mesenchymal stem cells when the luciferin pathway is overexpressed with a 20-30:1 ratio. Ratio-based expression is demonstrated to have minimal effects on phenotype or differentiation while enabling autonomous bioluminescence without requiring external excitation. We used this method to assay the proliferation, viability, and toxicology responses of iPSCs and showed that these assays are comparable in their performance to established colorimetric assays. Furthermore, we used the continuous luminescence to track stem cell progeny post-differentiation. Finally, we show that tissue-specific promoters can be used to report cell fate with this system. CONCLUSIONS: Our findings expand the utility of bacterial luciferase and provide a new tool for stem cell research by providing a method to easily enable continuous, non-invasive bioluminescent monitoring in pluripotent cells.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Mediciones Luminiscentes/métodos , Células Madre/fisiología , Línea Celular , Fibroblastos/fisiología , Humanos , Proteínas Luminiscentes/química
7.
Methods Mol Biol ; 2081: 29-41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31721116

RESUMEN

Bioluminescent yeast assays BLYES and BLYAS are whole-cell bioassays that utilize genetically modified Saccharomyces cerevisiae bioreporters to detect estrogenic and androgenic activities, respectively. The bioreporter strains chromosomally express human estrogen receptor alpha (BLYES) or androgen receptor (BLYAS) and contain a reporter plasmid expressing the complete bacterial luciferase gene cassette (luxCDABE) under the control of an estrogen- or androgen-responsive promoter. Exposure to endocrine-disrupting compounds activates the receptor which subsequently turns on the expression of the reporter genes, resulting in dose-dependent bioluminescence (i.e., light) emission. These yeast whole-cell bioassays provide rapid, cost-effective, and high-throughput detection of endocrine-disrupting activities in environmental samples. This protocol will provide a detailed description of the standard assay procedures as well as a framework for data analysis.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Disruptores Endocrinos/farmacología , Receptor alfa de Estrógeno/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Mediciones Luminiscentes/métodos , Receptores Androgénicos/genética , Saccharomyces cerevisiae/genética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Receptores Androgénicos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
8.
Front Microbiol ; 10: 2691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038503

RESUMEN

Chemotaxis and haptotaxis are important biological mechanisms that influence microbial movement toward concentrated chemoattractants in mobile liquids and along immobile surfaces, respectively. This study investigated their coupled effect, as induced by naphthalene (10 mg L-1), on the transport and retention of two pollutant-degrading bacteria, Pseudomonas fluorescens 5RL (Pf5RL) and Pseudomonas stutzeri DQ1 (PsDQ1), in quartz sand and natural soil. The results demonstrated that PsDQ1 was not chemotactic, whereas Pf5RL was chemotactic at 25°C but not at 4°C due to the restricted movement. In a quartz sand column, haptotaxis did not play a role in increasing the transport of Pf5RL as compared with chemotaxis. Compared with a naphthalene-free soil column, Pf5RL broke through naphthalene-presaturated soil columns to reach a stable effluent concentration 0.5 pore volumes earlier due to advective chemotaxis occurring behind the plume front in the bulk solution. Pf5RL also demonstrated greater retention (e.g., a doubled rate of attachment and a one-third smaller breakthrough percentage) due to along-surface haptotaxis and near-surface chemotaxis occurring in less mobile water near the soil surface. However, both chemotaxis and haptotaxis were weakened when Pf5RL co-transported with naphthalene due to reduced adsorption of naphthalene on the soil. This study suggests that surface adsorption of naphthalene can mediate the relative importance of advective chemotaxis (facilitating initial breakthrough), near-surface chemotaxis (increasing bacterial collision), and haptotaxis (increasing bacterial residence time).

9.
Anal Bioanal Chem ; 410(4): 1247-1256, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29214529

RESUMEN

An autonomously bioluminescent Saccharomyces cerevisiae BLYAhS bioreporter was developed in this study for the simple and rapid detection of dioxin-like compounds (DLCs) and aryl hydrocarbon receptor (AhR) agonists. This recombinant yeast reporter was based on a synthetic bacterial luciferase reporter gene cassette (lux) that can produce the luciferase as well as the enzymes capable of self-synthesizing the requisite substrates for bioluminescent production from endogenous cellular metabolites. As a result, bioluminescent signal production is generated continuously and autonomously without cell lysis or exogenous reagent addition. By linking the expression of the autobioluminescent lux reporter cassette to AhR activation via the use of a dioxin-responsive promoter, the S. cerevisiae BLYAhS bioreporter emitted a bioluminescent signal in response to DLC exposure in a dose-responsive manner. The model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), could be detected within 4 h with a half maximal effective concentration (EC50) of ~ 8.1 nM and a lower detection limit of 500 pM. The autobioluminescent response of BLYAhS to other AhR agonists, including 2,3,7,8-tetrachlorodibenzofuran (TCDF), polychlorinated bisphenyl congener 126 (PCB-126) and 169 (PCB-169), 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), benzo[a]pyrene (BaP), and ß-naphthoflavone (bNF), were also characterized in this study. The non-destructive and reagent-free nature of the BLYAhS reporter assay facilitated near-continuous, automated signal acquisition without additional hands-on effort and cost, providing a simple and cost-effective method for rapid DLC detection.


Asunto(s)
Bioensayo/métodos , Dioxinas/análisis , Receptores de Hidrocarburo de Aril/agonistas , Saccharomyces cerevisiae/metabolismo , Animales , Luminiscencia , Alimentos Marinos/análisis , Tilapia
10.
Sensors (Basel) ; 17(12)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29211045

RESUMEN

Modern drug discovery workflows require assay systems capable of replicating the complex interactions of multiple tissue types, but that can still function under high throughput conditions. In this work, we evaluate the use of substrate-free autobioluminescence in human cell lines to support the performance of these assays with reduced economical and logistical restrictions relative to substrate-requiring bioluminescent reporter systems. The use of autobioluminescence was found to support assay functionality similar to existing luciferase reporter targets. The autobioluminescent assay format was observed to correlate strongly with general metabolic activity markers such as ATP content and the presence of reactive oxygen species, but not with secondary markers such as glutathione depletion. At the transcriptional level, autobioluminescent dynamics were most closely associated with expression of the CYP1A1 phase I detoxification pathway. These results suggest constitutively autobioluminescent cells can function as general metabolic activity bioreporters, while pairing expression of the autobioluminescent phenotype to detoxification pathway specific promoters could create more specific sensor systems.


Asunto(s)
Profármacos/análisis , Bioensayo , Recuento de Células , Técnicas de Cocultivo , Genes Reporteros , Humanos , Luciferasas , Mediciones Luminiscentes
11.
Sci Total Environ ; 575: 247-257, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744153

RESUMEN

We assessed whether coal tar present in contaminated streambed sediments can be mobilized by flood events and be re-deposited in an adjacent floodplain. The study was conducted within a contaminated urban stream where coal tar wastes were released into a 4-km reach from a coke plant in Chattanooga, Tennessee, USA. Sediments containing visible amounts of coal tar were dredged from the streambed in 1997-98 and 2007 as part of a cleanup effort. However, post-dredging sampling indicated that very high concentrations of polycyclic aromatic hydrocarbons (PAHs) remained in streambed sediments. Sampling of sediments in the floodplain at two sites downstream of the coke plant indicated that high concentrations of PAHs were also present in the floodplain, even though no coal tar was observed in the samples. Age-dating of the floodplain sediments using 137Cs indicated that peak PAH concentrations were contemporary with coke plant operations. While there was little or any direct contamination of the floodplain sediments by coal tar, sediment contamination was likely a result of deposition of suspended streambed sediments containing sorbed PAHs. A flood model developed to delineate the extent of flooding in various flood recurrence scenarios confirmed the potential for contaminated streambed sediments to be transported into the adjacent floodplain. It was hypothesized that coal tar, which was visibly "sticky" during dredging-based stream cleanup, may act as a binding agent for streambed sediments, decreasing mobility and transport in the stream. Therefore, coal tar is likely to remain a persistent contaminant source for downstream reaches of the stream and the adjacent floodplain during flood events. This study also showed that even after excavation of tar-rich streambed sediments, PAH contaminated non-tarry sediments may be a source of flood-related contamination in the adjacent flood plain. A conceptual framework was developed to delineate specific mechanisms that can mobilize contamination from stream sources.

12.
Front Oncol ; 6: 150, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446798

RESUMEN

In vivo bioluminescent imaging (BLI) permits the visualization of engineered bioluminescence from living cells and tissues to provide a unique perspective toward the understanding of biological processes as they occur within the framework of an authentic in vivo environment. The toolbox of in vivo BLI includes an inventory of luciferase compounds capable of generating bioluminescent light signals along with sophisticated and powerful instrumentation designed to detect and quantify these light signals non-invasively as they emit from the living subject. The information acquired reveals the dynamics of a wide range of biological functions that play key roles in the physiological and pathological control of disease and its therapeutic management. This mini review provides an overview of the tools and applications central to the evolution of in vivo BLI as a core technology in the preclinical imaging disciplines.

13.
Ecotoxicology ; 24(10): 2043-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26497020

RESUMEN

The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad , Animales , Bacterias/efectos de los fármacos , Invertebrados/efectos de los fármacos , Plantas/efectos de los fármacos , Vertebrados/metabolismo
14.
Ecotoxicology ; 24(10): 2049-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419245

RESUMEN

The aim of this study was to evaluate the biological toxicity of cellulose nanocrystals (CNCs) using the constitutively bioluminescent luxCDABE-based bioreporter Escherichia coli 652T7. The effects of CNCs on E. c oli 652T7 biotoxicity were investigated at different CNC concentrations, reaction times, and IC50 values. CNC toxicity was also compared with and without ultrasonic dispersion to establish dispersibility effects. The results demonstrated that CNCs were not significantly toxic at concentrations at or below 250 mg/L. At concentrations higher than 300 mg/L, toxicity increased linearly as CNC concentrations increased up to 2000 mg/L. IC50 calculations demonstrated an increase in cytotoxicity as CNC exposure times increased, and elevated dispersibility of the CNCs were shown to increase cytotoxicity effects. These results suggest that CNCs can impact microbial populations if elevated concentration thresholds are met.


Asunto(s)
Celulosa/toxicidad , Escherichia coli/efectos de los fármacos , Nanopartículas/toxicidad , Escherichia coli/genética , Proteínas Luminiscentes/análisis , Pruebas de Toxicidad
15.
Ecotoxicology ; 24(10): 2200-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419244

RESUMEN

A luxCDABE-based genetically engineered bacterial bioreporter (Escherichia coli ARL1) was used to detect bioavailable ionic mercury (Hg(II)) and investigate the effects of humic acids and ethylenediaminetetraacetic acid (EDTA) on the bioavailability of mercury in E. c oli. Results showed that the E. c oli ARL1 bioreporter was sensitive to mercury, with a detection limit of Hg(II) of 0.5 µg/L and a linear dose/response relationship up to 2000 µg Hg(II)/L. Humic acids and EDTA decreased the Hg(II)-induced bioluminescent response of strain ARL1, suggesting that the two organic ligands reduced the bioavailability of Hg(II) via complexation with Hg(II). Compared with traditional chemical methods, the use of E. c oli ARL1 is a cost-effective, rapid, and reliable approach for measuring aqueous mercury at very low concentrations and thus has potential for applications in field in situ monitoring.


Asunto(s)
Escherichia coli/metabolismo , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Disponibilidad Biológica , Ácido Edético/análisis , Escherichia coli/efectos de los fármacos , Sustancias Húmicas/análisis , Ligandos , Mediciones Luminiscentes
16.
Ecotoxicology ; 24(10): 2133-40, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26423391

RESUMEN

Escherichia coli O157:H7 is a significant human pathogen that is continually responsible for sickness, and even death, on a worldwide scale. While the pathology of E. coli O157:H7 infection has been well studied, the effect of it's multiple resulting cytotoxic mechanisms on host metabolic activity has not been well characterized. To develop a more thorough understanding of these effects, several bioluminescence assays were evaluated for their ability to track both toxicity and host metabolic activity levels in real-time. The use of continuously autobioluminescent human cells was determined to be the most favorable method for tracking these metrics, as its self-sufficient autobioluminescent phenotype was unaffected by the presence of the infecting bacteria and its signal could be measured without cellular destruction. Using this approach, it was determined that infection with as few as 10 CFU of E. coli O157:H7 could elicit cytotoxic effects. Regardless of the initial infective dose, an impact on metabolic expression was not observed until bacterial populations reached levels between 5 × 10(5) and 1 × 10(6) (R(2) = 0.933), indicating that a critical bacterial infection level must be reached prior to the onset of cytotoxic effects. Supporting this hypothesis, it was found that cells displaying infection-mediated metabolic activity reductions could recover to wild type metabolic activity levels if the infecting bacteria were removed prior to cell death. These results indicate that rapid treatment of E. coli O157:H7 infection could serve to limit host metabolic impact and reduce overall host cell death.


Asunto(s)
Escherichia coli O157/fisiología , Consorcios Microbianos , Recuento de Colonia Microbiana , Células HEK293 , Humanos
17.
Ecotoxicology ; 24(10): 2088-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26471181

RESUMEN

A standardized protocol is demonstrated for bioluminescent strains Saccharomyces cerevisiae BLYES, BLYAS and BLYR as high-throughput screening tools to monitor the estrogenic, androgenic and toxic potencies in wastewater. The sensitivity and reproducibility of the assay in wastewater monitoring was evaluated for 7 day semi-continuous batch reactor using activated sludge with hormones spiked raw sewage. Yeast bioluminescent assay successfully captured the rapid removal of estrogenic and androgenic activities in the bioreactors, and demonstrated rapid response (≤4 h) with good reproducibility. This standardized protocol was then applied in a 12 months monitoring of the effluent of a WWTP located at Powell, TN, USA featuring parallel-operated full-scale membrane bioreactor (MBR) and traditional activated sludge (TAS) treatment. Monitoring results showed that estrogenic activity was persistent in all TAS and most MBR effluent samples, while residual androgenic activity was non-detectable throughout the monitored period. The estrogenic equivalents (EEQ) in TAS effluent ranged from 21.61 ng/L to 0.04 pg/L and averaged 3.25 ng/L. The EEQ in MBR effluent ranged from 2.88 ng/L to 0.0134 pg/L and averaged ~10 fold less (0.32 ng/L) than TAS. Despite the large temporal variation, MBR effluent EEQ was consistently lower than TAS on any given sampling date. Most MBR effluent samples also exhibited less cytotoxicity than TAS. Further analysis did not demonstrate significant correlation between effluent EEQ level and WWTP operational parameters including MLSS, SRT, HRT and BOD.


Asunto(s)
Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Reactores Biológicos , Genes Reporteros , Mediciones Luminiscentes , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Aguas del Alcantarillado/química , Tennessee , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/análisis
18.
Genome Announc ; 2(6)2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25414497

RESUMEN

The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport.

19.
Genome Announc ; 2(6)2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25414511

RESUMEN

Microbial release of greenhouse gases from thawing permafrost is a global concern. Seventy-six metagenomes were generated from low-soil-organic-carbon mineral cryosols from Axel Heiberg Island, Nunavut, Canada, during a controlled thawing experiment. Permafrost thawing resulted in an increase in anaerobic fermenters and sulfate-reducing bacteria but not methanogens.

20.
Adv Biochem Eng Biotechnol ; 144: 111-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25084996

RESUMEN

Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.


Asunto(s)
Bioensayo/métodos , Mediciones Luminiscentes/métodos , Compuestos Orgánicos/análisis , Animales , Células Eucariotas/efectos de los fármacos , Humanos , Compuestos Orgánicos/toxicidad , Riesgo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...